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Abstract

Decision making from sequential sampling, especially when
more than two alternative choices are possible, requires appro-
priate stopping criteria to maximize accuracy under time con-
straints. Optimal conditions for stopping have previously been
investigated for modeling human decision making processes.
In this work, we show how the k-nearest neighbor classification
algorithm in machine learning can be utilized as a mathemati-
cal framework to derive a variety of novel sequential sampling
models. We interpret these nearest neighbor models in the con-
text of diffusion decision making (DDM) methods. We com-
pare these nearest neighbor methods to exemplar-based models
and accumulator models, such as Race and LCA. Computa-
tional experiments show that the new models demonstrate sig-
nificantly higher accuracy given equivalent time constraints.

Keywords: sequential sampling; decision making; diffusion
decision making model; k-nearest neighbor classification; evi-
dence; sequential probability ratio test

Introduction

Whenever a faster decision is required to save time and re-
sources, the decision making process should focus on choos-
ing whether to proceed with a decision in light of the given in-
formation or to postpone the decision in order to collect more
information for a higher confidence level. In many previous
and recent psychology works, various computational models
have been introduced seeking to explain the speed-accuracy
tradeoff and to understand the decision making process in hu-
mans. However, apart from the understanding of individual
models, there has been little systematic way of understand-
ing these models in one mathematically unified framework.
Moreover, multiple-choice problems were not discussed in-
tensively in any of the methods.

The optimality in decision making with sequential sam-
pling is discussed with the optimality in speed-accuracy
tradeoff. In other words, the objective of the present work
is to seek the fastest decision with the same average accuracy
or the maximum accuracy if the same average decision time
is used. Sequential sampling methods such as Race (Smith
& Vickers, 1988; Vickers, 1970), diffusion decision making
(DDM) (Ratcliff, 1978; Ratcliff & Rouder, 2000; Shadlen,
Hanks, Churchland, Kiani, & Yang, 2006; Ratcliff & Mck-
oon, 2008), and leaky competing accumulator (LCA) (Usher
& McClelland, 2001; Bogacz, Usher, Zhang, & McClelland,
2007) are all interested in explaining this optimality in the

speed-accuracy tradeoff. In these methods, one or more vari-
ables are commonly introduced for accumulating sampled in-
formation, and a criterion is used to determine whether to
continue collecting more information or to make a decision
with given information. Here, we propose a common mathe-
matical framework combining these methods and providing a
systematic explanation for understanding different methods.

Our framework combining sequential sampling methods is
the k-nearest neighbor (NN) classification in machine learn-
ing. The sequential sampling situation with multiple choices
is explained as the multiway k-NN classification from the the-
oretical analysis on k-NNs in the asymptotic situation. Due
to this connection, we can interpret all different types of se-
quential sampling methods as different methods of choosing
k adaptively in k-NN classification. By further analyzing the
strategy of choosing k in k-NN classification using the Se-
quential Probability Ratio Test (SPRT) (Wald & Wolfowitz,
1948) and Bayesian inference, we can obtain five different ac-
cumulating variable and stopping criteria for optimal tradeoff.
Interestingly, all these five optimal methods are interpreted as
different kinds of DDM strategies.

Our work is directly applied to a recently reported neuro-
scientific decision making mechanism. The proposed mech-
anism considers an output neuron which sends out a decision
result. By collecting Poisson spike trains from different neu-
rons, the output neuron makes a decision about which neuron
gives Poisson spikes at the highest rate (Shadlen & Newsome,
1998; Ma, Beck, Latham, & Pouget, 2006; Beck et al., 2008;
Zhang & Bogacz, 2010). The output neuron can achieve op-
timality by using our proposed strategies.

The proposed method can be compared with traditional ex-
emplar models which explain memory retrieval using similar-
ity weighted voting based on stored exemplars. Our work is
different from this line of research by using majority voting
of adaptively chosen k& number of NNs. We discuss the ad-
vantages and disadvantages of our method when it is applied
to the memory retrieval problem.

The rest of the paper is organized as follows. We introduce
the sequential sampling problem in Section 2 especially from
the point of view of multiple-choice. In Section 3, we in-
troduce problems to which sequential sampling methods can
be applied, and we show how k-NN classification can be natu-
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rally introduced as a common framework for explaining these
problems. In Section 4, we derive the examples of two- and
multiple-choice evidence for DDM in light of k-NN classifi-
cation. After we explain the relationship between our method
and other exemplar methods in Section 5, we present simu-
lation experiments in Section 6. Finally, we conclude with
discussion in Section 7.

Computational Methods in
Sequential Sampling Problems

Sequential sampling methods consider decision making using
incoming information over time. With unlimited time, the
decision can be made late enough to increase the expected
accuracy. However, if the decision should be made as soon
as possible, there is a trade-off between the speed and accu-
racy of the decision. In order to address this tension, decision
making strategies introduce criteria to determine whether or
not to make a decision at a certain time.

Accumulator Model: One simple method of determining
whether the accumulated information has reached a certain
level of confidence is the accumulator model. This model
considers one variable for each choice and accumulates in-
formation separately in favor of each choice. Once one of
the accumulating variable reaches a predefined threshold, the
decision is made immediately thereafter.

This simple model with no interaction between different
choices is known as suboptimal. This method can be com-
pared with the DDM strategy in the next section, where the
accuracy of the accumulator model is always less than the ac-
curacy of the DDM model (Zhang & Bogacz, 2010). This
model of doing race between accumulators is also called the
Race model.

Diffusion Decision Making (DDM) Model: In this model
with two choices, one variable is introduced to collect infor-
mation and diffuse toward one of the choice. This variable,
also known as the evidence, represents the bias in the pref-
erence of accumulated information toward a choice. Finally,
once the evidence reaches a pre-defined level of any choice,
it stops diffusing and selects the choice.

A canonical method of determining the evidence vari-
able and stopping criterion uses the sequential probability
ratio test (SPRT) (Wald & Wolfowitz, 1948; Dragalin, Ter-
takovsky, & Veeravalli, 1999; Zhang & Bogacz, 2010). Pre-
vious work using this test has considered two incoming Pois-
son signals aiming to determine the signal with the higher
Poisson rate from the accumulation of signals. In this case,
the diffusing evidence is just the difference in the number of
signals within a certain time, and the decision is made once
this difference exceeds a threshold. This method is known to
be optimal among sequential sampling methods such as Race
and LCA (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Bogacz et al., 2007).

Leaky Competing Accumulator (LCA): LCA uses one
variable for each choice similar to the accumulator model,

but it considers the interaction between the variables. LCA
considers the dynamics of activation with the decay of the
activation as well as the inhibitory interaction between acti-
vation variables. This LCA dynamics is very flexible in that
the strategy can be either similar to Race or DDM as its spe-
cial case, but the maximum performance is known to be that
of DDM (Bogacz et al., 2007).

Multiple-Choice Extension

Among the aforementioned sequential sampling models, the
multiple-choice extension of the Race and LCA models is
straightforward, by just increasing the number of accumulat-
ing variables. However, the extension of DDM is more com-
plex. Fortunately, the Multiple SPRT (MSPRT) method was
previously developed by extending the SPRT method using
the number of signals (Dragalin et al., 1999; Zhang & Bo-
gacz, 2010). In addition to this MSPRT result, we also pro-
vide different criteria for multiple-choice DDM using deriva-
tions from other approaches of MSPRT and Bayesian infer-
ence. Our result provides an evidence diffusing in a C — 1
dimensional space for a C alternative choice problem.

Sequential Sampling Problems

Decision making problem using sequential sampling can be
found in many examples. Here we introduce two exemplary
problems. One example can be found in neuronal decision
making as in the left figure of Fig. 1. When an output neuron
tries to make a decision as to whether one incoming signal
has a higher Poisson rate than the other has, the output neuron
can collect signals until the accumulated information reaches
a certain level.

Another example can be found in a Bayes classification
problem where we only have data generated from unknown
underlying density functions. Bayes classification selects the
class having the highest underlying density, but the classifier
in this case cannot directly access the underlying density in-
formation. A surrogate method of determining the class of
highest density is through k-NN classification. By collecting
more nearest neighbors, the confidence of choosing a class of
the highest density is expected to increase to a targeted level.

Here, we show that the two problems are in fact exactly
the same by explaining several theoretical results on k-NN
classification in the asymptotic situation:

Majority Voting Rule in k-Nearest Neighbor Classifica-
tion: When there are N number of training data with labels,
D = {x;,y;}Y,, where each datum x; € R” is represented as
a D-dimensional vector, and the label has one of C labels,
yi € {1,...,C}, k-NN classification assigns class y to a class-
unknown datum x according to the majority voting with k
labels of nearest data in D:

k
y=argmax }_ U(y,() = c) (1)
i=1

with nearest neighbor index n(i),i = 1,... k. The theoretical
study of this majority voting strategy originates from Cover
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Figure 1: Diffusion decision making (DDM) in neurons determines the input neuron with the higher firing rate, and its analogous
k-NN classification determines the larger class-conditional density function

and Hart (Cover & Hart, 1967; Cover, 1967), and in their
work, once there are enough data, the expected error mono-
tonically and asymptotically decreases with the number of k:

E(k=1)>E(k=2)>...>E(k=oo) )

for k < N. This continuous decrease of error will encourage
the use of more nearest neighbors, which explains the tradeoff
between the number of nearest neighbors k and the classifica-
tion accuracy.

Distance Comparison Rule of k’-th NNs of Each Class: If
we consider a strategy of comparing two k’-th NN in class 1
and class 2, we can easily prove that this strategy is equivalent
to the majority voting rule with k = 2k’ — 1 NNss.

Proof: Consider a comparison between k'-th NN of class
1 and another k'-th NN of class 2. If K'-th NN in class 1 is
closer than k'-th NN in class 2, then we can say that the k'-th
NN in class 2 can never be included in the closest (2k' — 1)
NNs, because at least k' number of NNs in class 1 and (k' —1)
number of NNs in class 2 have less distance than the k'-th
NN in class 2. Therefore, comparing strategies of k'-th NN
in each class is the same as majority voting with (2k' — 1)
nearest neighbors.

Therefore, the monotonic increase of accuracy is also sat-
isfied with the increase of k.

Two Sequential Sampling Methods in k-NN Classification:
From the monotonic increase of the accuracy with the in-
crease of k (or k'), we can make two different sequential sam-
pling methods showing the speed-accuracy tradeoff.

First, we can consider the majority voting strategy using
number of NNs within a certain distance from the testing
point. If we do not have enough accuracy with the current
distance, we can increase it to use more resources. Another
example can be designed by considering the distance to the
same k’-th NN in each class and making a decision by com-
paring the distances.

The first design corresponds to the sequential sampling

with continuous time and discrete accumulation of informa-
tion, because the accumulation variable is the function of the
number of NNs. In contrast, the second design uses the dis-
crete time and continuous accumulation of information.

Distribution of the distances: Now, we show that k-NN
classification is in fact equivalent to sequential sampling for
determining the signal with the highest Poisson rate.

A recent study discussed the distribution of the distance to
the NNs when there are enough data (Leonenko, Pronzato, &
Savani, 2008). Instead of directly dealing with the distribu-
tion of distance, they changed the random variable to u = NV,
with volume V of D dimensional hypersphere having the dis-
tance to the k-th NN as a diameter multiplied by the number
of data N. Then the distribution of samples approaches the
Erlang density function:

k
(k)

p(u|A) = = exp(—Auju* ! 3)

with a parameter A, which is the probability density p(x) at
x € RP. Moreover, this special Erlang function implies the

Poisson distribution of the number of NNs k within a speci-
fied volume of the hypersphere (Wasserman, 2003):

k

p(k|A) = m

exp(—A). 4)
This equation shows that the number of NNs within a growing
hypersphere at a constant rate in volume is a Poisson process.

Comparing this Poisson process interpretation with the
aforementioned neuronal decision making, we can draw sev-
eral corresponding analogies. The firing rate of the Poisson
signal corresponds to the underlying density function in k-NN
classification, the number of spikes corresponds to the num-
ber of NNs, the time within which spikes are counted cor-
responds to the volume of the hypersphere within which we

count NNs, and as a consequence, determining a choice with
the highest firing rate corresponds to the problem of deter-
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mining the class with the highest underlying density function,
which is also known as the Bayes classification.

The correspondence shows that these two very well-known
methods from different disciplines can share optimal strate-
gies as well as theoretical knowledge. However, the study
of a method in one field is rarely investigated in another; the
strength of the correspondence suggests that whenever a good
strategy is found for DDM, a corresponding strategy should
be examined for machine learning. Conversely, when a new
strategy is provided for the k-NN method, its relevance to psy-
chology should also be investigated.

Derivation of Stopping Criteria

In this section, we now derive stopping criteria from k-NN
classification using MSPRT and Bayesian inference for a
multiple-choice problem.

Multiple Sequential Probability Ratio Test

One simple statistical test for determining whether one of C
different choices has the highest probability density is the
MSPRT. MSPRT uses fixed parameters of densities A, and
A_ where A, > A_, it calculates the likelihood that the first
data came from the density A, and others from A_, and then
compares those likelihoods.

Without loss of generality, we consider the likelihood that
the highest density A, is occupied by A;. In other words,
M =Ay,and A, = A_ for ¢ =2,...,C. Because of the inde-
pendence between classes,

IOgP(kl,...,kc,ul,...,uc

M=A A=A, ... M:x,)
C

= logp(ki,u|Ay)+ ) logp(ke,uc|h-). 6))
c=2

The posterior Py that A; occupies A is proportional to this
likelihood Eq. (5). From the Poisson distribution in Eq. (4)
with k., the number of NN of class ¢ within the same volume,
we can obtain the log of posterior:

C
logP, = g"k; —log <Z exp(g*kc)> (©6)

c=1

with a predetermined ratio g* = log(A /A_). If we consider
the volume distribution for the same k-th NNs, the equation
for the posterior also becomes

c
logP; = —h*u; —log <Z exp(h*uc)> @)

c=1

with 2 = A4 —A_. We call Eq. (6) “DN”, which considers
the difference in the number of NNs within a specific vol-
ume of the hypersphere and Eq. (7) “DV”, which considers
the difference in the volumes of the same k-th NNs. In order
to make a decision with confidence, we can first increase the
volume of hypersphere or increase the number of NNs un-
til the criterion exceeds a pre-defined confidence level, then

we can decide the choice. For two-choice problem (C = 2),
comparing the MSPRT criteria with a certain value reduces
to a simple comparison whether g*(k; — k) and h*(up — uy)
is greater than a certain confidence threshold, for Eq. (6) and
Eq. (7), respectively.

For DV, an additional conservative method can be consid-
ered. The decision can be made more carefully for the class of
interest (here, class 1), by using the maximum possible vol-
ume containing k-th NN, in other words, the volume of the
hypersphere of (k+ 1)-th NN of class 1 instead of the volume
of k-th NN. We call this strategy “conservative DV” (CDV),
and in CDV, an additional NN is always used to calculate the
accumulated information.

Bayesian Inference
Another method of utilizing the Bayesian method is to use the
prior density function for A with parameters a and b:

be
(a)

p(A) = ——A" exp(—Ab). (8)
With conjugacy relationship, we can calculate the posterior
probability that the underlying density of choice 1, A;, is
greater than the underlying densities of the other choices
A2,...,Ac with given condition D on nearest neighbor in-
formation. The calculation of P(A; > A, ...,Ac|D) is per-
formed using the probability primitives such as P(A; < A2|D),
P(M <A3|D), ...,and P(A} < Ap,...,Ac|D):

P(A > M2, Ac|D) :/0 dhip(M[D) (1 —A d7»2P(7~2D)>
1

'”(IA?”Cp“dDO ©)
=1—PM <M|D)...— P(M < Ac|D)+

A (=DCIP <A, Ae|D). (10)
When the condition is on the number of nearest neighbors

ki,...,kc within a certain volume, the general form of primi-
tives is presented with multinomial coefficients:

P(?\q<7\.j2,...,7\,jL‘k1,...,kc)= (11

kj, k

Y- f 1 ki + X (ki — 1))
(ki+1+XE , (kje—ij)) \ k;j coe ks —1

i,=0 ijL=oL J2 "l s ki =i

where L and jy,..., ji are determined according to the prim-
itives in Eq. (10). In addition, when volume information
uy,...,uc is given for ky,- - - ,kc-th NN in each class, respec-
tively, the primitives are

P(?\.l<7\.j2,...,?\.jL|u1,...7uc)= (12)
“?ﬁL<m+ﬁam> o
ij,=0i;, =0 s sl ) (uy +Zf:2”jc)k'+zgzzij"+l

for L and ji,...,j; determined from the primitive. Now,

Eq. (10) with primitives in Eq. (11) can be considered as a
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Figure 2: Examples of diffusion of evidence for three-choice decision making. The diffusion of posteriors, P; and P,, are
plotted on the horizontal and vertical axes. The threshold is set to .8.

criterion “PN” and Eq. (10) with primitives in Eq. (12) can
be considered as a criterion “PV.” Here, we used a = 1 and
positive small value b.

For a two-choice problem, with k.-th NNs in ¢ class within
the same hypersphere, the probability result becomes a very
simple equation

2k+1—r
k (2k+1) AT 13

P(h > A = —_—
(M 2lur,uz) mg’O m (11 4 1up)2k+1
from Eq. (11). Similarly, with u; and u, of k-th NN in each
class, Eq. (12) becomes

1 & ki+hk+1
P > halkisko) = Sy Y < e . (14
m=0

Both Eq. (13) and Eq. (14) are the sums of binomial distri-
butions which can be interpreted analogous to coin tossing
problem with a biased and an unbiased coin. Eq. (13) corre-
sponds to the probability of having heads less than or equal
to k among 2k + 1 tosses of a biased coin, and Eq. (14) cor-
responds to the probability of having heads less than or equal
to k; among k| + ky + 1 tosses of an unbiased coin.

We can note that all derived stopping criteria have a pos-
terior representation where the sum over classes equals one.
Therefore, we can consider a C — 1 dimensional simplex and
the diffusion of the posterior within this simplex. Therefore,
a vector with posterior elements for all candidate classes ex-
tending Eq. (10) can be considered as a diffusing evidence in
a DDM model, and all criteria derived in this work can sub-
sequently be considered as DDM models.

Relationship with other Exemplar Methods

One typical method of learning with exemplars is utilizing the
similarity measures with exemplars (Nosofsky, 1986; Shep-
ard, 1987). Recently, this model was connected to kernel
learning methods in machine learning (Jakel, Scholkopf, &
Wichmann, 2008), which connected the similarity notion to
an associated reproducing kernel Hilbert space as well as
to Bayesian inference (Shi, Griffiths, Feldman, & Sanborn,
2010). These similarity-based methods utilizing exemplars
are computationally well-integrated with various machine
learning methods.

However, majority voting with equal weights, which is pro-
posed in this work, is a completetly different approach of

Accuracy

-#-PN
-&-DN
-a—KkNN
4-Race
Cons
‘ ‘ P LCA :
0 5 10 15 20 25
Average number of nearest neighbors

Figure 3: Performance of adaptive k-NN classification using
PN, DN, Race, and a machine learning criteria, “Cons.” Ac-
curacy is plotted with an average number of NNs used for var-
ious thresholds of confidence. Cons makes a decision when
the number of recent consecutive NNs of the same class ex-
ceeds a threshold (Ougiaroglou et al., 2007).

utilizing exemplars, where the theoretical explanation shows
optimality in certain situations (Bailey & Jain, 1978). Our
model is also different from the random walk model using
conventional exemplar models (Nosofsky & Palmeri, 1997).
The random walk is performed according to the random re-
trieval from already generated data, while our model directly
considers the underlying density function and uses the gener-
ated data without any additional randomness. A severe prob-
lem in the memory retrieval of Nosofsky and Palmeri is that
a repetitive retrieval of one very similar exemplar will affect
the decision predominantly where a noise on this particular
exemplar can severely affect the decision accuracy.

Experiments with Simulation Data

The examples of diffusion of the evidence for each criteria
are shown in Fig. 2. In this experiment, the proposed five
examples of evidence PV, PN, DV, CDV, and DN, diffuse with
the same NN information. In the figure, all five examples
diffuse differently, but they reach the same threshold. The
parameters used are A; = .25, Ay = .35, and A3 = .4, and
the decision threshold is .8. Though they diffuse differently,
CDYV shows a smoother diffusion than the others, and PN and
DN show more sampling-wise configuration.
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Figure 4: Performance using volume evidence. The CDV
with smooth diffusion is slightly better than DV, while PV
outperforms both CDV and DV with large margins.

The performance evaluation of the methods is shown us-
ing k-NN classification. We first generated data randomly
from three uniform probability densities, A; = .2, Ay = .7,
and A3z = .1, and compared the adaptive k-NN classification
method between the proposed criteria and other criteria from
psychology and machine learning models. In Fig. 3, as ex-
pected in our analysis, the Race accumulator model without
interaction does not outperform the criteria from statistical
tests, PN and DN, although using a Race criterion does give
a better performance than a simple majority voting method
with fixed k. We also compared our results with a conven-
tional machine learning method, which considers the number
of recently appeared NNs belonging to the same class.

In Fig. 4, three criteria using volume information, PV, DV,
and CDV, are compared. According to a few realizations in
Fig. 1, the diffusion of CDV is in general much smoother
than that of DV, and the CDV criterion shows a little better
accuracy than DV. PV shows better performance than either
DV or CDV.

Conclusion

In this work, a general framework integrating decision mak-
ing with sequential sampling is proposed based on its rela-
tionship with the exemplar-type machine learning algorithm,
k-NN classification. In contrast to previous research on sub-
optimal weighted voting, we have shown how k-NN majority
voting can be used to better understand the sequential sam-
pling decision making process. Using an adaptive k-NN clas-
sification framework, we also showed how the proposed five
examples of optimal criteria are derived for multiple-choice
decision making, minimizing the error for any given average
resource that can be used. Our future work includes extend-
ing this relationship among decision making methods to form
a scaffold of understanding within the mathematical frame-
work of k-NN methods.
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