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A continuum of phonetic adaptation: Evaluating an incremental belief-updating
model of recalibration and selective adaptation

Dave Kleinschmidt1 and T. Florian Jaeger1,2

{dkleinschmidt, fjeager} @ bcs.rochester.edu
1Department of Brain and Cognitive Sciences and 2Department of Computer Science,

University of Rochester, Rochester, NY, 14607 USA

Abstract

We have previously proposed that incremental belief updat-
ing can provide a unified account of the effect of cumula-
tive exposure on phonetic recalibration and selective adapta-
tion (Kleinschmidt & Jaeger, 2011). This model predicts that
these are not two distinct phenomena but rather two points on
a continuum. We investigate that prediction here using adaptor
stimuli intermediate between those which induce recalibration
and selective adaptation, and find that the quantitative predic-
tions of the model fit the data well. We also demonstrate that
with the proper controls, Mechanical Turk provides a suitable
online platform for speech perception experiments.

Keywords: Phonetic adaptation; Speech perception; Recal-
ibration; Selective adaptation; Bayesian models; Mechanical
Turk

Introduction
Language is fraught with variability, and such variability is
a particular problem in the mapping from acoustic cues to
phonetic categories. Some of this variability is simply ran-
dom noise, from imprecision in the production and percep-
tion systems, but much of it is systematic, reflecting real dif-
ferences in the way that individual speakers realize phonetic
categories.

One of the ways in which the human speech perception
system deals with such systematic variability is through rapid
recalibration of phonetic categories in response to novel ac-
cents (Bradlow & Bent, 2008; Kraljic, Brennan, & Samuel,
2008) and unusual pronunciations of particular phonetic cate-
gories (Norris, McQueen, & Cutler, 2003; Vroomen, Linden,
Gelder, & Bertelson, 2007). Through repeated exposure to
a sound which is acoustically ambiguous between, say, /b/
and /d/, but which is disambiguated via visual or lexical in-
formation as a /b/, the listener’s categorization behavior will
change: they will classify more items on a /b/-to-/d/ contin-
uum as /b/.

Such recalibration is often contrasted with selective pho-
netic adaptation, where repeated exposure to an prototyp-
ical /b/ results in exactly the opposite effect on the lis-
tener’s categorization behavior: they will classify fewer items
on the continuum as /b/ (Eimas & Corbit, 1973; Samuel,
1986; Vroomen, Linden, Keetels, Gelder, & Bertelson, 2004;
Vroomen et al., 2007). Selective adaptation and recalibration
are generally held to be qualitatively distinct, for a number of
reasons.

First, recalibration results from repeated exposure to an
acoustically ambiguous stimulus, while selective adaptation
relies on repeated exposure to an unambiguous stimulus, and

is in fact stronger for more prototypical stimuli (Miller, Con-
nine, Schermer, & Kluender, 1983). Second, despite the fact
that both come from repeated exposure to a phonetic category
member, they have opposite effects on that category.

Third, selective adaptation and recalibration are thought to
reflect different levels of processing. On the one hand, selec-
tive adaptation is thought to generally reflect low-level, per-
ceptual processing (Samuel, 1986). On the other, phonetic
recalibration (or “perceptual learning for speech”, Norris et
al., 2003) seems to reflect reorganization of the phonetic
categories themselves (Clarke-Davidson, Luce, & Sawusch,
2008; Maye, Aslin, & Tanenhaus, 2008), is long-lasting
(Eisner & McQueen, 2006), and in some cases generalizes
to new speakers and phonetic contrasts (Kraljic & Samuel,
2006).

Fourth, the amount of cumulative exposure has a dramati-
cally different effect on selective adaptation and recalibration
(Vroomen et al., 2007). Selective adaptation grows stronger
with more exposure, while recalibration becomes weaker af-
ter an initial rise, to the extent that it is eventually extin-
guished (Figure 2, left).

Despite these differences, selective adaptation and recal-
ibration have something in common: they are reactions to
unusual distributions of acoustic-phonetic cues. Listeners
are exquisitely sensitive to such distributional information
(Clayards, Tanenhaus, Aslin, & Jacobs, 2008; Maye, Werker,
& Gerken, 2002), and we propose that incremental belief up-
dating might provide a unified account of a range of phonetic
adaptation phenomena, possibly including selective adapta-
tion (Kleinschmidt & Jaeger, 2011).

This approach suggests that at least in some cases, selec-
tive adaptation and perceptual recalibration are better under-
stood as part of a continuum of phonetic adaptation effects,
rather than as qualitatively distinct processes, which raises the
question of what sort of adaptation effect intermediate adap-
tors will produce. In this paper, we investigate the quanti-
tative predictions about such intermediate adaptors made by
our belief-updating model.

First, we describe how incremental belief updating pro-
vides a unifying account of the effects of cumulative expo-
sure on recalibration and selective adaptation (Kleinschmidt
& Jaeger, 2011). This model is used to derive quantitative
predictions for the effect of cumulative exposure to audio-
visual speech stimuli on a continuum between acoustically
ambiguous and prototypical. These predictions are tested
against human behavior. Finally, we conclude with a discus-
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Figure 1: Qualitative predictions of the Bayesian belief
updating model for phonetic recalibration (top) and selec-
tive adaptation (bottom). Left panels show changes in
mean/variance after a small number of adaptor trials, and
middle panels show the effect of further exposure. Note that
while the adaptor for recalibration is acoustically ambiguous,
it is disambiguated (by means of, e.g., a visual /aba/), and
thus the percept is biased towards the /b/ prototype. Right
panels show corresponding identification curves.

sion of future directions for both the computational modeling
and behavioral work.

Model and predictions
Speech perception can be considered a process of statistical
inference: given a set of acoustic-phonetic cues, what is the
most likely intended phonetic category (Sonderegger & Yu,
2010; Feldman, Griffiths, & Morgan, 2009; Kleinschmidt &
Jaeger, 2011)? This inference critically depends on accurate
beliefs about the distributions of acoustic-phonetic cues for
each category. If the listener’s expectations about what a /b/
sounds like do not match what the speaker produces then the
listener is at rist of mistaking the speaker’s intended phonetic
category. Thus, a rational listener must update their expecta-
tions based on experience.

Figure 1 shows how such incremental belief updating ex-
plains the qualitative differences between recalibration (top)
and selective adaptation (bottom) based on the respective dis-
tributions of acoustic cues (Kleinschmidt & Jaeger, 2011).
Phonetic categories are naturally “wide”, with random vari-
ability inherent in perception and production processes. Se-
lective adaptation effects are captured by the fact that in the
prototypical-/b/ condition, the unusually tight clustering of
acoustic cues from the repeated adaptor stimulus causes the
/b/ category to shrink, resulting in fewer /b/ responses to test
stimuli from the middle of the continuum.

For recalibration, the initial rise in /b/ responses after ex-
posure to the acoustically ambiguous (but visually or lexically
disambiguated) /b/ adaptor is due to a shift in the mean of
the /b/ category, towards the middle of the continuum. With

more exposure, however, the tight clustering again causes the
/b/ category to contract. Because the acoustically ambiguous
adaptor is biased towards the prototypical /b/ by the disam-
biguating (visual or lexical) cue (by a McGurk effect or per-
ceptual magnet effect, etc.), the shrinking of the /b/ category
means that, like with selective adaptation, it pulls away from
the middle of the continuum, resulting in an eventual decrease
in /b/ responses.

This belief-updating model treats the behavioral phenom-
ena of selective adaptation and recalibration as two points on
a continuum of phonetic adaptation effects, which is deter-
mined by the statistics of the adaptor stimuli. One way of
describing these statistics is by the mean and the variance of
the adaptor stimuli, and our model makes quantitative pre-
dictions about the whole range of adaptors, from prototypical
adaptors (which produce selective adaptation) to auditorily
ambiguous adaptors (which produce phonetic recalibration),
as well as intermediate adaptors, where the adaptor is neither
fully auditorily ambiguous nor prototypical.

Specifically, phonetic adaptation with such intermediate
audio-visual adaptors should be intermediate in time course
and in direction. One simple way of characterizing the time
course of phonetic adaptation is the number of exposures at
which the direction of the effect of /b/ exposure switches
from more /b/ classification to less /b/. In Vroomen et al.
(2007, replotted in Figure 2, left), this “switch point” for the
ambiguous condition is essentially the end of one full block:
/b/-classification is greater after ambiguous /b/ (solid lines)
than after ambiguous /d/ exposure (dashed lines) until the
very end of the block, at 256 trials, where the two become in-
distinguishable again. For the prototypical condition, there is
less /b/ classification after /b/ exposure from nearly the first
adaptor repetition, and so can we say that the switch point
is at the beginning of the block. For intermediate adaptors,
this switch point will be between the point for fully ambigu-
ous and fully prototypical adaptors, closer to the ambiguous
switch point for more ambiguous adaptors and closer to the
unambiguous point for less ambiguous adaptors (Figure 3,
black curves with arrows showing switch points).

Model specification

We refer the reader to Kleinschmidt and Jaeger (2011) for
full details of the model. This model treats phonetic cate-
gories as Normal distributions over acoustic-phonetic cues,
p(xi|ci) ∼ N (µci ,σ

2
ci
). The listener’s beliefs about these cat-

egories are captured by Normal-Gamma probability distribu-
tions over the category means and variances, p(µc,σ

2
c). Af-

ter exposure to adapting stimuli X from category c, the lis-
tener’s beliefs are updated via Bayes rule, p(µc,σ

2
c |X ,c) ∝

p(X |µc,σ
2
c)p(µc,σ

2
c). This finds the best compromise be-

tween the listener’s prior beliefs and the mean and variance
that is most consistent with the data.

The probability of a /b/ response to a stimulus x, p(b|x),
depends on the likelihood of x under each category p(x|b) and
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Figure 2: Results from Vroomen et al. (2007), left, and Experiment 1, right: More /b/-classification after ambiguous /b/
exposure (solid lines, left panels) than /d/ exposure (dashed lines). After prototypical-/b/ exposure (solid lines, right panels),
less /b/-labeling.

p(x|d), as well as the prior probability of /b/ and /d/:

p(b|x) = p(x|b)p(b)
p(x|b)p(b)+ p(x|d)p(d)

The predictions of the model depend not only on the mean
and variance of the adaptor stimuli (the likelihood function)
but also the prior beliefs about the category means and vari-
ances. While each subject’s most likely means and variances
can be determined based on their pre-test classification data,
the confidence in these beliefs must be treated as free param-
eters (Kleinschmidt & Jaeger, 2011).

Here we incorporate a few minor improvements over our
original model. Instead of fitting the after-effect measure used
by Vroomen et al. (2007) (the difference between /b/ and
/d/ exposure), here the model is fit to the /b/-classification
rate curves for each individual condition. This requires ac-
counting for asymmetry in the prior probability of /aba/ vs.
/ada/, which was fixed to p(b) = 0.7, based on the English
biphone probabilities of /aba/ and /ada/ (Vitevitch & Luce,
2004).1 The free parameters are fit via MCMC sampling
(rather than a grid-search) based on the binomial likelihood
of the responses (using a weakly-informative prior).

We next describe experiments which test the predictions of
this model. These are extensions of the paradigm of Vroomen
et al. (2007), which we have adapted to run on a novel web-
based platform. The first experiment replicates Vroomen et
al. (2007) to validate this platform, and the second investi-
gates the effect of cumulative exposure on adaptation to in-
termediate adaptors.

Experiment 1
Our first experiment is a replication of Vroomen et al. (2007).
This is important both to verify the findings of Vroomen et

1When the prior probability of /b/ vs. /d/ is treated as a free
parameter, the best-fitting value is 63% chance of /b/, very close to
the corpus-derived value.

al. (2007) with English speakers but also to verify our web-
based platform for running audio-visual phonetic adaptation
studies.

Participants
24 participants were recruited and run via Amazon’s Mechan-
ical Turk service. An additional 4 subjects were excluded by
the criteria described below.

Procedure
Our procedure is adapted from Vroomen et al. (2007), and
our stimuli are identical in order to maximize similarity to
the original study for purposes of replication (we thank Jean
Vroomen for graciously providing them). These stimuli con-
sist of a 9-item /aba/-to-/ada/ continuum synthesized by ma-
nipulating F2 locus in equal steps on a log-frequency scale.
Audio-visual adaptor stimuli were created by combining a
video of a speaker producing /aba/ or /ada/ with one contin-
uum item, according to the condition.

Subjects first did a pre-test and calibration phase, where
they classified items from the audio continuum as /b/ or /d/.
The point of maximum ambiguity was found via logistic re-
gression for each subject. Subjects who mis-classified any
of the two most prototypical stimuli on each end (less than
70% accuracy) were excluded, as were any subjects whose
maximally ambiguous stimulus was not one of the three mid-
dle continuum items 4, 5, or 6. Three subjects (11%) were
excluded by these criteria and replaced.

During the main phase, in each of four blocks subjects saw
64 repetitions of an adaptor stimulus. This stimulus was visu-
ally either /b/ or /d/, and auditorily either a prototypical, un-
ambiguous rendition of the visual category (continuum item
1 or 9, respectively), or auditorily ambiguous (that subject’s
most ambiguous continuum item as determined during pre-
test). These four blocks were presented in latin-square or-
der across subjects. Audio-only test stimuli were interspersed
throughout each block in sets of six (two repetitions of each
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of the three most ambiguous stimuli) after 1, 2, 4, 8, 16, 32,
and 64 exposures.

To ensure that subjects were paying attention to the videos,
catch trials were randomly interspersed, where a small white
dot flashed for one frame below the nose of the speaker. Sub-
jects who failed to respond to at least 80% of these trials (or
missed more than 50% in one block) were excluded; only
one subject was excluded by these criteria and replaced. Be-
sides this subject, accuracy was 95% (compared to 93% in
Vroomen et al., 2007).

Results
Because subjects were not run in the laboratory, there is some
uncertainty about the conditions under which our subjects are
doing the task. As one control for this, we compared their
performance on the pre-test calibration task with the perfor-
mance of the subjects in Vroomen et al. (2007) using a logis-
tic mixed-effects regression model, with predictors for stim-
ulus and group (web vs. lab) and with the maximum random
effects structure justified by the data. Web and lab subjects
did not differ in the slope of their category boundaries (β =
0.07,SE = 0.14, p = 0.60). The category boundary (point of
maximum ambiguity) was on average about one half to one
continuum step closer to the /b/ end of the continuum com-
pared to the lab subjects (β =−1.15,SE = 0.27, p < 10−4).

Our results from the main phase replicate Vroomen et al.
(2007) as well (Figure 2). In the prototypical (selective adap-
tation) condition, subjects classify fewer test items as /b/ af-
ter /b/ exposure, and this effect grows stronger with further
exposure. In the ambiguous (recalibration) condition they
classify more as /b/ after /b/ exposure, but this effect even-
tually begins to weaken. Because our subjects only saw 64
exposure trials in each block, versus 256 in Vroomen et al.
(2007), recalibration does not completely dissipate by the end
of the block, but it does begin to weaken.

The most notable difference between our findings and
those of Vroomen et al. (2007) is that in the prototypical, se-
lective adaptation condition of our experiment, /b/-exposure
initially produces more /b/-classification (as in the ambigu-
ous, recalibration condition). There are two possible expla-
nations for this. First, the “prototypical” stimuli we use cor-
respond to natural productions of /aba/ and /ada/ by Dutch
speakers, and may not be fully prototypical to English lis-
teners, which, as we will see in Experiment 2, can produce
recalibration-like effects with small amounts of exposure.
Second, adaptation could carry over from one block to the
next, producing baseline shifts. Such carry-over effects are
observed in the data of Vroomen et al. (2007) as well, but
are effectively confined to earlier blocks of their experiment
(each of their subjects did a total of 16 blocks, versus only
four here) and thus do not show up as strongly in the averaged
data. In addition, at the end of the ambiguous (recalibration)
blocks there is a bigger difference between /b/ and /d/ expo-
sure in our data than in Vroomen’s et al., which would mag-
nify any carry-over effects on the prototypical blocks (which
are preceded two-thirds of the time by an ambiguous block).

Experiment 2
The second experiment tests the predictions of our belief-
updating model about the effect of cumulative exposure to
adaptor stimuli intermediate between the prototypical and au-
ditorily ambiguous stimuli used in the previous experiment.
This also serves as another replication of Vroomen et al.
(2007) using our web-based approach.

Participants
A total of 126 participants were recruited, run, and paid
through Amazon’s Mechanical Turk service as in Experiment
1. Six (5%) were excluded for poor catch trial performance,
eight (6%) for misclassifying too many prototypical pre-test
stimuli, and 18 (14%) for unusual category boundaries (as
above).2 After these exclusions, 94 subjects remained.

Procedure
The procedure was similar to that from Experiment 1, ex-
cept that there were four ambiguity conditions rather than
two, and they were distributed between subjects rather than
within. In addition to the prototypical (selective adaptation)
and ambiguous (recalibration) conditions from Experiment 1,
there were two intermediate conditions. In the intermediate-
ambiguous condition, the audio component was one step to-
wards the visual category prototype from the maximally am-
biguous stimulus, and in the intermediate-prototypical condi-
tion it was two steps.

Each subject performed two blocks: one /aba/ and one
/ada/ of one of the four ambiguity conditions, in order to
minimize the effects of carry-over between blocks. Each
block was 128 exposure trials, with test trials as in Experi-
ment 1.

Results
Figure 3 shows the results from all four conditions. As pre-
dicted by the belief-updating model, as the auditory compo-
nent of the adaptor is less and less ambiguous, the switch
point between recalibration-like and selective adaptation-like
behavior moves closer and closer to the beginning of the
block (Figure 4).

The quantitative predictions of the model are also a good
match for the observed data. The predictions of the model
are shown in black. These predictions correspond to the free
parameters which best fit the ambiguous and unambiguous
conditions. As in Kleinschmidt and Jaeger (2011), the model
predictions provide a good fit for the behavior in the ambigu-
ous and unambiguous blocks (r2 = 0.67). More importantly,
without refitting, the model predictions match just as well
on the two intermediate conditions (r2 = 0.66). That is, the
model does not merely fit but quantitatively predicts the time
course of adaptation to the intermediate adaptors.

2The large number of subjects excluded for unusual category
boundaries could be attributed either to variability in listening equip-
ment and environment, or to the fact that our listeners are English
speakers but the continuum was generated based on Dutch produc-
tions of /aba/ and /ada/.
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Figure 3: Model predictions and results from each subject’s first block. Left to right shows fully ambiguous, intermediate-
ambiguous, intermediate-prototypical, and prototypical. Solid lines are for visual-b exposures and dashed are visual-d. Colored
lines are average /b/ response rate, and error bars are 95% confidence intervals on the mean. Black lines are model predictions
based on best-fitting parameters to only ambiguous and unambiguous blocks, and shaded regions are 95% confidence intervals
based on MCMC sampling of model free parameters with a weakly informative prior.
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Figure 4: Predicted and actual recalibration-to-selective-
adaptation switch points. The x-coordinate of each point
is the predicted switch point (black curves/arrows in Fig-
ure 3), and the y-coordinate is the observed point (colored
curves/arrows).

Discussion and conclusion
We have proposed that incremental belief-updating can pro-
vide a unified account of selective adaptation and phonetic
recalibration, and have tested a model based on that princi-
ple against existing data on the effect of cumulative exposure
on these two effects from Dutch listeners (Kleinschmidt &
Jaeger, 2011). In this study we have first replicated this data
(Vroomen et al., 2007) with American English listeners, us-
ing a novel, web-based platform, and second, extended the
original study to test a key prediction of the model that exist-
ing data does not address.

It is generally argued that selective adaptation and recal-

ibration are qualitatively distinct effects (e.g., Vroomen et
al., 2004). However, our model suggests that they both re-
sult from adaptation to changes in the statistics of the lin-
guistic environment, and can be understood as two points on
a continuum of phonetic adaptation phenomena. The data
we present here shows that intermediate audio-visual adap-
tors produce adaptation which is intermediate in time course
and direction in a way that is quantitatively consistent with
the model predictions.

There is, of course, a large body of work which highlights
the differences between selective adaptation and recalibra-
tion, and this study addresses only one such difference. We
cannot, and do not, on the basis of this study claim that selec-
tive adaptation and recalibration are, in a mechanistic sense,
the result of the same process. Rather, our approach offers
some insight into these seemingly distinct adaptation phe-
nomena by considering how the two behavioral patterns are
related to the statistics of the linguistic environment.

Consider the alternative explanation of our results in terms
of separate processes of selective adaptation (a decrease in
/b/ responses after /b/ exposure) and recalibration (an in-
crease in /b/ responses after /b/ exposure). Selective adap-
tation is stronger for more prototypical adaptors (Samuel,
1982; Miller et al., 1983), and so more the more selective
adaptation-like time course of adaptation with increasingly
prototypical adaptors might be explained simply by an inter-
polation between the time courses of recalibration and selec-
tive adaptation. However, this explanation leaves unanswered
the question of why selective adaptation should be involved at
all in recalibration, especially considering the fact that selec-
tive adaptation has been claimed to only be a function of the
audio component of an AV stimulus (Saldaña & Rosenblum,
1994) and there is little-to-no selective adaptation observed
for boundary stimuli (Miller et al., 1983).
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Treating selective adaptation and recalibration as ratio-
nal reactions to changes in the linguistic environment makes
the intuitive idea about interpolating between the two time
courses precise and quantitative, but more importantly why.
As the listener encounters different speakers and different lis-
tening conditions, their linguistic environment is constantly
changing, often in unpredictable ways. The listener needs
to be able to cope with such changes and so must update
their beliefs (and behavior) in response to their recent expe-
rience. However, while the reasons for such adaptation may
be the same, the mechanisms by which it occurs could dif-
fer, with recalibration resulting, mechanistically, from higher-
level language processing and selective adaptation occurring
at a lower, perceptual level (Samuel, 1986).

The major goal of this work is to formulate a learning
model for phonetic adaptation and use that model to guide ex-
perimental investigation of the whole range of phonetic adap-
tation phenomena. While this program emphasizes the sim-
ilarities between different sorts of adaptation, it also aims to
uncover even finer-grained empirical distinctions, in part to
further the use of adaptation as a window on language pro-
cessing, generally.

The model we have evaluated here is a first step and makes
many simplifying assumptions. Still, it is a Bayesian model
which, via data-determined priors and known processes—
like sensitivity to category variance and the McGurk effect—
provides a unified theoretical explanation for a puzzling in-
teraction between the behavioral effects of selective adapta-
tion and phonetic recalibration. More importantly, it makes
fine-grained and testable predictions about the time course of
behavior, some of which we have verified here.

Future work will focus on exploring the relationship be-
tween this rational model and boundedly rational implemen-
tations like exemplar models and particle filters. We will also,
via structured, hierarchical extensions of this simple model,
focus on resolving the apparent conflict between rapid adap-
tation to new speakers and the long-term stability of the lin-
guistic system. Finally, and most importantly, we will use
the predictions of these models to continue to systematically
probe the space of phonetic adaptation behavior in order to
inform and constrain the modeling work.
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