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Abstract

Mathematics is often seen as the uncovering of eternal truths
that exist independently of the human mind. However, even
if this epistemological view is correct, the mathematics that
humans can know can only be the result of cognitive processes.
We investigate this ability of the human mind to make math-
ematical discoveries. More precisely, we present a cognitive
model of how the ability to use metaphors and analogies plays
a key role in such discoveries. As a proof of concept we present
an ACT-R model that uses path-mapping and that is capable
of discovering the commutativity property of addition.

Keywords: analogy; metaphor; mathematics; scientific discov-
ery; cognitive modelling.

Mathematical Discoveries

The Cognition of Mathematics

The way in which people construct, evaluate and modify math-

ematical concepts has received relatively little attention from

cognitive science. Likewise, automated mathematical theory

formation has so far put little emphasis on cognitively plausi-

ble mechanisms. In the Wheelbarrow project, we are, therefore,

working towards a cognitive theory of mathematical thought

in order to substantiate the existing theories and to improve

automated theory formation systems.

We build on two streams of research: embodied conceptual-

isation, which analyses mathematical ideas from a cognitive

perspective (Lakoff & Núñez, 2000), and societal conceptuali-

sation based on Lakatos’s (1976) philosophical account of the

evolution of mathematical ideas. Both argue strongly against

the ‘romantic’ (Lakoff and Núñez) or ‘deductivist’ (Lakatos)

style in which mathematics is presented as an ever-increasing

set of universal, absolute, certain truths which exist indepen-

dently of humans.

Our main interest is how mathematical concepts are formed

and modified by the embodied and situated human mind. For

instance, Euclid formulated geometric axioms to describe the

physical world – the foundations of Euclidean geometry. Eu-

clidean geometry was later modified by rejecting the parallel

postulate (one of the axioms), and non-Euclidean geometries

were formed, along with new sets of concepts. On a less cele-

brated but equally remarkable level children are able to formu-

late and modify mathematical rules about their environment

such as transitivity or the commutativity in arithmetic. Lakoff

and Núñez’s theory of embodied mathematics and Lakatos’s

philosophy of mathematics suggest explanation of how this

may work.

The Role of Metaphors

In this paper, we focus on the approach by Lakoff and

Núñez (2000). They propose that the human embodied mind

brings mathematics into being. That is, human mathematics

is grounded in the bodily experience of a physical world, and

mathematical entities inherit properties of objects in the world,

such as being consistent or stable over time. Via exploration of

the physical world we build up mini-domains, which we then

map to abstract mathematical domains, allowing us to make

inferences in the abstract world by transferring knowledge

about the physical world. The main process enabling humans

to make this transfer is the ability to use metaphors.

Metaphors and analogies in mathematics have so far been

mainly documented by educators (for example, English, 1997;

Sfard, 1996). Despite the importance of metaphors and analo-

gies for discovering new concepts in mathematics, historians

and philosophers of mathematics, and mathematicians them-

selves have tended to be silent on the matter, with notable

exceptions such as Lakatos (1976, p 9; who recommends em-

bedding a conjecture in a distant body of knowledge, eg a

conjecture about solids in the theory of rubber sheets), Polya

(1954, p 15–22; who describes and analyses Euler’s appli-

cation of rules for finite equations to infinite equations) and

Weil (see Krieger, 2003; who discusses a number of fruitful

historical mathematical analogie.s)

Metaphors and Detecting New Scientific Concepts

Lakoff and Núñez (2000) argue that our ordinary conceptual

system is fundamentally metaphorical in nature: metaphor

makes abstract thought possible, and the development of

thought is the process of developing better metaphors. They

characterise metaphors as a ‘grounded, inference-preserving

cross domain mapping’ (p 6), thus enabling us to use the infer-

ential structure of one domain to reason about another. They

catalogue a large number of mathematical metaphors, thus

suggesting how highly abstract mathematical ideas may be

discovered and understood, and how they can be traced back

to human embodiment.

Lakoff and Núñez show how conceptual metaphors are re-

vealed by everyday language, eg the expression adding onions

to soup, suggests that add can mean physically placing objects

in a container. They place great emphasis on the type of do-

mains in a metaphor and distinguish two types of metaphor:

grounding metaphors, in which one domain is embodied and

the other abstract, and linking metaphors, in which both do-

mains are abstract. Many linking metaphors in mathematics

conceptualise some domain of mathematics in terms of arith-
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metic, ie arithmetic is used as a source for many mathematical

metaphors, including points in space, spaces of any number

of dimensions and functions (p 387). Lakoff and Núñez’s

four different physical domains of Object Collection, Object

Construction, Measuring Stick and Motion Along A Path all

map to the domain of arithmetic, thus showing a many-to-one

mapping between the domains (chapter 3). An example of

such many-to-one mappings is addition, which is the target

of a mapping from putting collections together, putting ob-

jects together with other objects to form larger objects, putting

physical segments together end-to-end to form longer physical

segments and moving a distance away from an origin location.

Examples of one-to-many mappings include the domain

of sets, which is mapped to ordered pairs (p 150), natural

numbers (p 150) and naturally continuous space with point

locations (p 263). In these examples different components of

the source domain sets are identified and mapped, suggest-

ing that the domains are not fully pre-represented but consist

in different, interrelated schemata where the most relevant

schema is selected or constructed for each new metaphor. This

is in line with Hofstadter’s (1994) argument that finding a

good metaphor relies on extrapolating the currently useful

‘gist’ from a domain (which depends on the purpose of the

metaphor). These ideas go back to William James’s (1890)

claim that there is no property that is absolutely essential to

one thing.

Metaphor and Analogy

Metaphors are similar to analogies. Gentner (1983; see also

Gentner & Markman, 1997, p 48) proposes that when com-

paring two concepts we can distinguish whether there is an

analogy, a metaphor, a literal similarity or a mere appearance

similarity by looking at the number of relations and properties

that the two concepts have in common, see table 1. These no-

tions can, thus, be placed in a two-dimensional space. Accord-

ing to this classification there is no binary distinction between

analogy and metaphor but only a difference in degree.

Making these distinctions assumes that source and target

domains are represented in terms of objects and predicates.

Theories of mapping usually rest on the distinction between

attributes, predicates with one argument (to describe object

properties) and relations (predicates with more arguments to

Table 1: Metaphors and analogies. (Abstraction differs from

analogy in that it has only few object attributes in the source

as well as the target domain.)

mapped attributes mapped relations

literal similarity many many

appearance many few

analogy few many

metaphor some some

abstraction few many

anomaly few few

describe interactions between objects). This is a fuzzy distinc-

tion even in natural language, but perhaps even more so in

mathematics: for instance, polyhedron might be the relation-

ship between the objects edge, face and vertex, an attribute of

a specific shape or an object itself.

Lakoff and Núñez do not explicitly make this distinc-

tion. However, translating their natural language examples

of metaphor, some favour relation over attribute mappings,

placing these examples close to analogy. For instance, in the

Infinite Sums Are Limits Of Infinite Sequences Of Partial

Sums metaphor (p 197), in which limits of infinite sequences

are compared to infinite sums, limits of sequences are mapped.

Given the similarity between metaphor and analogy, we use a

cognitive model of creating analogies: path-mapping.

Modelling Scientific Discovery

Building computational cognitive models of scientific discov-

ery is difficult, because it requires the building of comprehen-

sive models that comprise many different cognitive abilities.

Nevertheless, such models have been built with some success,

for example by Schunn and Anderson (1998). They conducted

experiments and built a model of discovering the fan effect1

in psychology. However, in order to be able to control their ex-

periments (to allow a statistical analysis of the collected data)

they strictly limited the participants’ options – something very

much unlike real scientific work. Furthermore, their partic-

ipants were given a preexisting scientific hypothesis. (The

hypothesis was set as the goal of the cognitive model.) The

task was to confirm or disprove the hypothesis. This is dif-

ferent from the step that we are addressing here, namely the

formulation or discovery of a new hypothesis.

Related cognitive models also include algebra learning

(Anderson, 2007). However, these are models of learning from

instruction not of discovery. Thus, they are models of the ef-

fects of increased practise, ie they describe the speedup of

solving algebraic equations with increased practise.

A Case Study: Discovering Commutativity

Why Commutativity?

As a first case study we built a computational cognitive model

of discovering commutativity for addition, ie the fact that the

result of an addition is not affected by the order of the addends

(1+2= 2+1). This seems an appropriate example, because

this rather elementary (albeit not trivial) discovery does not

require an extraordinary mathematical gift or a particular con-

stellation in mathematical history but has almost certainly

been made many times independently and spontaneously. The

main cognitive process driving this discovery is analogy (or

metaphor). As this process has already been studied in cog-

nitive science it lends itself to cognitive modelling. However,

we do not propose that it is the only way in which discoveries

1The fan effect is the observation that the time for memory recall
increases with the number of relevant facts. Thus, the more relevant
knowledge is available, the longer the retrieval of a fact takes. One
explanation is that the facts compete to be retrieved, and that resolving
this competition takes longer the more facts are available.

728



are made; insight can take many other forms.

Preconditions

Discovering commutativity requires a number of cognitive

abilities and some preexisting knowledge. Because the make

or break condition for developing a cognitive model of dis-

covery is to make sure that what the model discovers is not

something that the modeller already built in, we will describe

the cognitive abilities that can rather safely be assumed to

exist when a person (be it a mathematician or a second-grader)

discovers commutativity and take this as starting point.

By linking the discovery of certain mathematical facts to

using particular metaphors, Lakoff and Núñez (2000) provide

us with a useful starting point. They list a number of cognitive

abilities required to make a discovery like commutativity.

Subitising and cardinality Psychological experiments with

young babies show that there is an innate ability to distinguish

object collections of different sizes. This subitising ability

enables babies (and older humans) to immediately identify

the cardinality of small object collections of sizes up to 3 or

4. In the classic experimental setup babies see a display of

objects within the subitising range. A screen is placed between

the objects and the baby, so that the objects are hidden from

view. Then an object is moved behind the screen (added) or

appears from behind the screen (subtracted). When the screen

is removed again and the resulting number of objects is as

expected (say, starting with 2 objects, removing 1 object and

revealing 1 object) the babies show no surprise. If the result is

unexpected (say, starting with 2 objects, removing 1 object and

revealing 2 objects) the babies do show surprise, eg by staring

at the objects for a longer period of time or by sucking on a

pacifier with an increased frequency. See Lakoff and Núñez

(2000, p 18) for a discussion. Even though humans usually

have developed an abstract notion of number by the time they

are able to discover commutativity, it gives our model a firm

footing.

The screen experiments also show that babies have a notion

of cardinality. In versions of the experiment where, for exam-

ple, puppets were changed to balls, the babies did respond to

differences in the number of objects, but not to differences in

the identity of objects (see, Lakoff & Núñez, 2000, p 18).

Arithmetic Is Object Collection Metaphor Lakoff and

Núñez (2000) argue that the Arithmetic Is Object Collection

metaphor (the ability to understand arithmetic operations in

terms of manipulating collections of physical objects) is al-

ready available to the student when formal education in mathe-

matics begins. They point out that many techniques in teaching

arithmetic assume that this metaphor is available. For the case

of commutativity this means that the student already knows

that the cardinality of an object collection is not affected by

the order in which smaller object collections are put together

to form it.

Argument Ordering In addition to the knowledge that com-

mutativity holds for object collections the student/model must

know that the order of arguments of an operation can affect the

result (as it does in removing objects from an object collection).

The ordering of arguments is a property of the path-mapping

model (see below), where the roles that objects fill in relations

are explicitly represented.

Mapping Knowledge In addition to having the knowl-

edge the model must also have the ability to create analo-

gies/metaphors that make use of the existing knowledge. For

this, we use the path-mapping algorithm.

Symmetry detector We finally assume that the model has a

subprocess (a production in our model) that is specialised on

detecting the symmetry of roles in path-mapping. Ferguson

(1994) provides an account of the role of symmetry in such

tasks. This certainly is the strongest assumption, but given

the omnipresence of symmetry in the cognition of humans

and animals, it seems justified. It ranges from mate selection,

where symmetry correlates with mate quality (eg Manning,

Scutt, Whitehouse, & Leinster, 1997), to spatial cognition, eg

Silverman (2002) makes this point.

Path-Mapping

Overview

The path-mapping model of analogy formation (Salvucci &

Anderson, 1998, 2001) is a cognitive model of how an in-

terconnected substructure of a knowledge representation (the

source domain) is mapped onto another substructure (the target

domain). It is essentially a structure mapping model (Gentner

& Markman, 1997) that includes a more detailed account of

the cognitive mapping processes. For example, when gener-

ating analogies the system could try to map infinitely many

possible relations between source and target domain. For an

agent acting in the real world, it is computationally too costly

to explore all of them, because such agents operate under real

time constraints.

Salvucci and Anderson use the ACT-R cognitive architec-

ture, which provides a framework of the invariant or slowly

changing parts of cognition, so that these (1) do not need to

be implemented again for each model and (2) can provide

explanations of parts of the phenomenon by reducing them

to already well-established facts about cognition. Put simply,

ACT-R is a production system with (1) a model of human

declarative memory, (2) a subsymbolic layer and (3) modules

for perception and motor control. The problem of the large

number of possible relations, for example, is partially solved

by ACT-R’s declarative memory, which leads to models that

consider only a subset of relations – those relations that have

a high likelihood of being relevant for the given task.

We decided to use path-mapping, because it already proved

its cognitive adequacy for a number of cases (Salvucci &

Anderson, 2001). The fact that it is implemented in ACT-

R allows us to investigate metaphor and analogy in a wider

cognitive context, in particular, how these cognitive abilities

work in interaction with the environment (a main aim of our

project, on which we do not report here). In line with Gentner’s
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(1983, p 156) structure mapping, the main feature of path-

mapping is that analogies are created by mapping (higher-

order) relations.

Reimplementation

Many aspects of the ACT-R architecture have changed since

the original path-mapping model was published. (The orig-

inal model was written in ACT-R 4.0, the current version

is ACT-R 6.0.) Because the changes affect many parts of

the architecture that are needed for path-mapping, it seemed

appropriate to reimplement the model. We just mention three

of the most notable changes here. Firstly, there is no goal

stack in ACT-R 6.0, which means that all goals that are not

currently pursued must be stored in declarative memory. Sec-

ondly, there is now a limited set of buffers that contain all

temporary information. Each buffer can only hold one chunk

(fact), and modules interact by placing chunks in buffers and

reading chunks from buffers. The set of all buffers is usually

considered ACT-R’s working memory. Thirdly, the archi-

tecture now has perceptual and motor modules that allow a

cognitively adequate interaction with the environment.

An Example

For our case study we used a simple example where the model

mapped two additions: 1+2= 3 and 2+1= 3, see figure 1.

result

3

3

=2 + 1

21 + =
equalityaddend2operatoraddend1

Figure 1: Example of two equations with symmetrical ad-

dends.

There are three mappings between these additions. The first

mapping, for example, represents the fact that the number 1,

which is the first addend in the first addition, is mapped on the

number 2, which is the first addend in the second addition.

Knowledge Representation

The knowledge representation used by the path-mapping

model for the addition example is graphically shown in fig-

ure 2. This representation is parallel to the one given by

Salvucci and Anderson (2001). Ovals show objects and re-

lations, boxes show roles. Apart from a name given in bold

(and not used by the model), a role consist of five components

‘parent: a pointer to the parent relation, parent-type: the se-

mantic type of the parent relation, slot: the relation slot that the

object fills in the relation, child: a pointer to the child object

or relation, child-type: the semantic type of the child object

or relation’ (p 75). Because object manipulation is learnt thor-

oughly, it can be assumed that the commutativity property is

an abstraction in the sense of Gentner (1983, p 158–159), ie

objects do not have properties.

Simulations

The path-mapping model takes an object or relation from the

source domain, for example add1-one, and tries to map it

on an object in the target domain. It proceeds by retrieving

a role that is filled by this object from declarative memory,

here: the role labelled add1-addend1.2 The parent relation

of this role is add1-addition, which is taken as the cue for

the next retrieval from declarative memory. This process is

iterated until no more role can be retrieved, that is, until the

process reaches the root relation. Once that happens the model

tries to find roles in the target domain that correspond to the

ones it used in the path from the object to the root relation.

So, in this case it would map add1-lhs onto add2-lhs and

add1-addend1 onto add2-addend1. The model records both

these mappings. (One of them appears as mapping1 in the top

graph of figure 3.) With this, the path-mapping is finished, and

the model can try to map the next object. However, our model

first attempts to find symmetrical roles, see below.

It should be noted that this implementation of path-mapping

does not only work for our addition example but works equally

well with Salvucci and Anderson’s original example of the

solar-system–atom analogy. Thus, our model is further support

for Salvucci and Anderson’s claim that path-mapping is task

independent, ie it is a central process of analogy formation.

Discovering Commutativity

After a path-mapping has been successfully concluded and

the mapped path is stored as a chunk in declarative memory, a

symmetry detector tries to retrieve a chunk from declarative

memory in which the roles were used symmetrically in the

source and target domains, see the top of figure 3. In our

example, this means the model finds the use of symmetrical

roles for the path-mappings of add1-one/add2-two for the

role addend1 and add1-two/add2-one for the role addend2.

After the model found the symmetrical roles it searches

the declarative memory for a chunk representing symmetrical

roles in another domain (bottom of figure 3). If (1) commuta-

tivity holds in this other domain and (2) the knowledge transfer

is possible (ie the Arithmetic Is Object Collection metaphor is

present) the model ‘discovers’ that addition is commutative.

(See the conclusions on the term discovery.)

Unified Theory of Concepts

The cognitively based path-mapping representation is related

to a general mathematical characterisation of concepts and

relations, the Unified Theory of Concepts (Goguen, 2005),

which analyses representations along three axes: the syntac-

tic primitives (called signature), the sentences based on a

signature, and the (mathematical) structures involved in the

semantics. A basic requirement is that of invariance under

renaming of syntax. The path-mapping for the atom–solar sys-

2In the representation we use here, each object fills only one role.
However, nothing depends on this, as can be seen, for example, in
Savucci and Anderson’s original example of the solar-system–atom
analogy. It just means that out case is simpler.
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Source Target

add1-addition

add1-addend1

addition
addend1

one

add1-addend2

addition
addend2

two

add1-rhs

equality
rhs

three

add1-lhs

equality
lhs

addition

add1-one add1-two

add1-three

add1-equality

add2-addition

add2-addend1

addition
addend1

two

add2-addend2

addition
addend2

one

add2-rhs

equality
rhs

three

add2-lhs

equality
lhs

addition

add2-two add2-one

add2-three

add2-equality

Figure 2: Knowledge representation used for path-mapping in the addition example.

tem analogy is in fact a signature morphism (arity preserving

function that changes names), though in general this will be a

partial morphism, defined only on a subset of the syntax.

For the arithmetic example, the lexicon is the same. In this

case, the path-mapping can be taken as defining an operation

on arithmetic equations ‘swap arguments to plus’, applied

uniformly; the fact that this operation preserves arithmetic

truth means that it is an institution morphism (Goguen, 2006).

These observations suggest that the path-mapping approach

may be fruitful over different representation systems, not just

the one for which it was originally proposed.

Conclusions

We presented a computational cognitive model of a mathe-

matical discovery. Although the model is still incomplete and

limited to a particular case, it provides an important step to-

wards our goal of an embodied, interactive, cognitive model

of mathematical discovery.

There still is the question of what a discovery is. In this

paper we described the formation of an analogy between a

source domain and a target domain. However, more is needed

to claim that the model made a discovery. Firstly, the model

must be able to distinguish useful discoveries from spurious

ones (Boden, 1990, p 32). Otherwise, it will get bogged down

by the large number of spurious discoveries. Secondly, after

the commutativity property of the object collection domain

has been transferred to the arithmetic domain, the discovery

addition is commutative must be confirmed by a proof or

integrated into the target domain as a new axiom.

Analogy/metaphor is not the only way in which scientific

concepts can be created, although it seems to be the most

common one. For example, we did not consider the processes

of concept learning (concept formation) in which observed

commonalities between categories of objects or events (shared

features) give rise to a new concept, eg commutativity in the

object collection domain. In addition to this inductive process,

there are certainly also deductive mechanisms of discovery.

Future Research

Our future research will extend the presented model in three

main directions. Firstly, we will apply it to more cases of

mathematical discoveries to gain a higher level of general-

ity for the model. Again, commutativity is a good example,

because in many cases it is known whether it is a property

of a mathematical concept, eg rotation, or not, as in the case

of subtraction. Secondly, we will embed the model in a task

environment. As a first step we will replace the explicit setting

of goals for path-mapping attempts by using ACT-R’s visual

module to read the two equations from a display. Thirdly, we

will implement the ability to identify useful discoveries and

then formulate a conjecture and attempt to prove it or add the

discovery as a new axiom.
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