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Pathway Evolution Through a
Bottlenecking-Debottlenecking Strategy and Machine
Learning-Aided Flux Balancing

Huaxiang Deng, Han Yu, Yanwu Deng, Yulan Qiu, Feifei Li, Xinran Wang, Jiahui He,
Weiyue Liang, Yunquan Lan, Longjiang Qiao, Zhiyu Zhang, Yunfeng Zhang,
Jay D. Keasling,* and Xiaozhou Luo*

The evolution of pathway enzymes enhances the biosynthesis of high-value
chemicals, crucial for pharmaceutical, and agrochemical applications.
However, unpredictable evolutionary landscapes of pathway genes often
hinder successful evolution. Here, the presence of complex epistasis is
identifued within the representative naringenin biosynthetic pathway
enzymes, hampering straightforward directed evolution. Subsequently, a
biofoundry-assisted strategy is developed for pathway bottlenecking and
debottlenecking, enabling the parallel evolution of all pathway enzymes along
a predictable evolutionary trajectory in six weeks. This study then utilizes a
machine learning model, ProEnsemble, to further balance the pathway by
optimizing the transcription of individual genes. The broad applicability of this
strategy is demonstrated by constructing an Escherichia coli chassis with
evolved and balanced pathway genes, resulting in 3.65 g L−1 naringenin. The
optimized naringenin chassis also demonstrates enhanced production of
other flavonoids. This approach can be readily adapted for any given number
of enzymes in the specific metabolic pathway, paving the way for automated
chassis construction in contemporary biofoundries.
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1. Introduction

Heterologous pathway engineering has
emerged as a cornerstone in biosynthesis,
playing a pivotal role in the production
of a wide array of industrially relevant
compounds, from pharmaceuticals to
biofuels, thereby revolutionizing the land-
scape of synthetic biology and industrial
biotechnology.[1] The current strategies
for improving these pathways primarily
involve the optimization of enzyme expres-
sion levels, the enhancement of precursor
supply, and the reduction of pathway
bottlenecks.[2] Advanced techniques such
as dynamic control of pathway genes, com-
putational design for enzyme discovery,
and machine learning-guided pathway
optimization have been employed, offering
unprecedented precision and efficiency
in pathway improvement.[1b,3] However,
the process of evolving multiple pathway

H. Deng, H. Yu, Y. Deng, Y. Qiu, F. Li, X. Wang, J. He, W. Liang, Y. Zhang,
J. D. Keasling, X. Luo
Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic
Biology, Shenzhen Institutes of Advanced Technology
Chinese Academy of Sciences
Shenzhen 518055, P. R. China
E-mail: jdkeasling@lbl.gov
H. Deng, W. Liang
The Key Laboratory of Industrial Biotechnology, Ministry of Education,
School of Biotechnology
Jiangnan University
Wuxi 214122, P. R. China
H. Yu, X. Luo
University of Chinese Academy of Sciences
Beijing 100049, P. R. China
Y. Lan, L. Qiao, Z. Zhang, X. Luo
Shenzhen Infrastructure for Synthetic Biology, Shenzhen Institute of Syn-
thetic Biology, Shenzhen Institute of Advanced Technology
Chinese Academy of Sciences
Shenzhen 518055, P. R. China
J. D. Keasling
Joint BioEnergy Institute
Emeryville, CA 94608, USA

Adv. Sci. 2024, 11, 2306935 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2306935 (1 of 12)

http://www.advancedscience.com
mailto:xz.luo@siat.ac.cn
https://doi.org/10.1002/advs.202306935
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:jdkeasling@lbl.gov


www.advancedsciencenews.com www.advancedscience.com

enzymes presents significant challenges, as it requires a delicate
balance of multiple factors, including enzyme activity, stability,
and specificity, and often involves navigating the complex and un-
predictable landscape of protein engineering and metabolic flux
optimization.[4]

Natural evolution typically proceeds through incremental im-
provements in the activity, stability, and specificity of a particu-
lar enzyme, one at a time.[4b,5] This gradual process has often
been attributed to high levels of epistasis, a phenomenon where
the effects of genetic mutations are contingent upon other mu-
tations or the broader genetic context, leading to a complex re-
lationship between different mutations. A mutation that is ad-
vantageous in certain genetic settings might become harmful or
even fatal in others. Thus, traits with high epistasis limit evo-
lutionary potential, potentially reducing adaptability.[4e,5b,6] For
instance, most mutation combinations in multiple pathway en-
zymes can be detrimental or even lethal to specific species.[7] The
task of scanning all these combinations to identify the most ben-
eficial mutations also exceeds the capacity of the population.[5a,8]

Metabolic control theory further suggests that minor improve-
ments in one enzyme often render another enzyme the bottle-
neck of the pathway.[6c,7] As a result, evolution has been regulated
by nature to proceed at a slow pace, requiring millennia to aug-
ment an existing function or develop a new one.[5b] This gradual
adaptation process, which spans countless generations, is an im-
practical timeframe for industrial applications.[5b,9]

In recent decades, several strategies have been proposed to
accelerate the evolution of multienzymes in a specific pathway,
including MAGE[9a] and BacORep.[10] These methods leverage
in vivo mutagenesis to streamline library construction and im-
plement continuous multi-generation culturing to emulate na-
ture’s gradual adaptation process.[6b,11] Despite these advance-
ments, the achieved improvements have been relatively incre-
mental, and the final product titers remain low.[10,12] This phe-
nomenon highlights a key challenge in the laboratory-scale di-
rected evolution for industrial applications: the feasible time-
frame and available generations are considerably less than what
nature typically requires for significant evolutionary progress. To
overcome these limitations and further accelerate the directed
evolution process in a rugged landscape, a more effective ap-
proach is needed. For instance, one can change the landscape
to make it smoother, or one can find a known evolutionary tra-
jectory. That means the ideal approach would 1) operate within a
known evolutionary space for each enzyme to enable substantial
improvements within a practical timeframe; 2) employ a single
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sensor and assay for all pathway enzymes in the known evolu-
tionary space; 3) support parallel and iterative operations with
minimal human intervention.

Here, we initially illustrated the complex and rugged evolu-
tionary landscape of multiple genes within a heterologous path-
way. Subsequently, we introduced a method based on a bottle-
necking and debottlenecking strategy (Figure 1). This approach
not only reduced the ruggedness of the evolutionary landscape
for these enzymes, but also provided a predictable evolutionary
trajectory for them. The method employed the concentration of
the final product as the sole selection criteria for the evolution
of all pathway enzymes, thereby obviating the need for multi-
ple distinct assays for each enzyme and broadening the method’s
universal applicability. Moreover, this approach permits the par-
allel evolution of individual genes, facilitated by an automation-
based method to mitigate labor-intensive work, and is further en-
hanced by an AI algorithm for additional pathway optimization.
As a result, naringenin biosynthesis has been amplified to over
3 g L−1, underscoring the potential of this method for future mul-
tienzyme engineering endeavors.

2. Results and Discussion

2.1. Investigation of Epistasis Among Heterologous Pathway
Genes in Naringenin Biosynthesis

To investigate the prevalence of epistasis among heterologous
pathway genes in naringenin biosynthesis, we first assembled
four well-characterized pathway genes (Figure 2a) encoding
tyrosine ammonia-lyase (TAL) from Rhodotorula toruloides, 4-
coumarate-CoA ligase (4CL) from Petroselium crispum, chalcone
synthase (CHS) from Petunia x hybrida and chalcone isomerase
(CHI) from Medicago sativa, under the control of four individ-
ual T7 RNA polymerase promoters (PT7) and inserted them into
a pCDF vector to form plasmid pCDF-T4SI which has been
demonstrated to produce a high-level of naringenin (Figures 1
and 2b).[13] This plasmid was then transformed into Escherichia
coli BL21(DE3), and the production of naringenin was quan-
tified by high-performance liquid chromatography (HPLC) at
129.67 mg L−1 after a 48-h expression in a 96-well plate culture
(Figure 2c).

Given that certain mutations may be deleterious in one context
but advantageous in another, thereby allowing the fittest geno-
types to be accessed only through the accumulation of muta-
tions in a specific sequence,[4a,c] we aimed to identify a benefi-
cial mutant for TAL and subsequently assess its fitness under
different conditions. To start, we established a starting point for
directed evolution of TAL by examining a PBAD promoter-driven
TAL on plasmids with different copy numbers, including pBbS8C
(SC101 replicon, 5–10 copies), pBbA8c (p15a replicon, 10–15
copies), pBbB8a (BBR1 replicon, 17–20 copies), pBbE5K (ColE1
replicon, 20–30 copies) and pRSF (RSF replicon, 100 copies),[14]

whereas we kept the other three genes in the pCDF plasmid un-
der the control of PT7 promoter (pCDF-4SI) (Figure 1b,c). Then a
random mutagenesis library of TAL, TALlib, was integrated into
pBbE5K, which showed the highest naringenin production of
357.66 mg L−1, to obtain a library pBbE5K-TALlib for its directed
evolution. A previously reported Al3+ assay was used to screen for
variants with higher naringenin titers. However, after evaluating

Adv. Sci. 2024, 11, 2306935 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2306935 (2 of 12)

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 1. Pathway bottlenecking-and-debottlenecking strategy in this study. This pathway engineering strategy comprises three stages. Design the artifi-
cial naringenin pathway bottleneck by expressing the individual naringenin gene into the low-copy plasmid with the weak promoter (stage 1). Eliminate the
de-novo bottleneck of the naringenin pathway by screening the candidate mutants, which produce a similar naringenin production to that of the original
pathway (stage 2). Put mutants of the individual genes back into the original pathway and further balance the metabolic flux by artificial-intelligence-
mediated promoter engineering (stage 3).

more than 3000 variants, no hit showed a higher production, sug-
gesting the complicated epistasis might trapped the evolution to
its local maxima.

To obtain better TAL mutants to evaluate the epistasis in the
heterologous naringenin pathway, we then placed TALlib library
on the plasmid with the SC101 origin, which is maintained at a
low copy number in cells. The resulting plasmid library, pBbS8C-
TALlib, allowed a more manageable evolutionary trajectory for the
directed evolution of TAL, as improvement of TAL to reach the
same naringenin production as in pBbE5K should not encounter
problems such as intermediate toxicity or inter-pathway regula-
tion. When it was co-transformed with pCDF-4SI for Al3+ assay
screening (Figure 2b; Figure S1, Supporting Information), 179
variants exhibited stronger Al3+ assay signals than their corre-
sponding control, from which the top 7 were further validated by
HPLC to confirm their enhanced naringenin production. Their
mutation sites were revealed by sequencing (Table S3, Support-
ing Information). The kinetic parameters of the TAL mutant from
the best naringenin producer, TAL-26E7, were then assessed with
an in vitro assay.[15] The kcat/KM for TAL-26E7 was 1158 mm−1⋅s−1

(Table 1), which was 3.86-fold higher than its wild-type counter-
part. These results suggest that TAL-26E7, when present on a low-
copy plasmid, is indeed a beneficial mutant for both enzyme ac-
tivity and naringenin production (Figure 2d).

We then placed the wild-type TAL and all 7 selected TAL vari-
ants with the improved activities on pBbE5K to evaluate their per-
formance and investigate the potential epistasis. The resulting
plasmids were co-transformed with pCDF-4SI and their narin-
genin productions were monitored by HPLC. Although pBbE5K-
TAL showed a high naringenin titer of 357.66 mg L−1, the produc-
tion of naringenin was lower for all TAL variants, with the highest
being 86.22 mg L−1 (TAL-28B11) and lowest being 46.58 mg L−1

(TAL-26E7) (Figure 2e). This provides compelling evidence that
when TAL is present in a medium to high copy plasmid such
as pBbE5K, epistasis could potentially obscure the identifica-

tion of a beneficial mutant with enhanced naringenin produc-
tion. This suggests that epistasis could increase the likelihood
of the pathway becoming trapped at local maxima in the fitness
landscape due to the acquisition of mutations in an unfavorable
sequence.[6a] These findings also elucidate why pathway evolu-
tion often results in minimal or no improvement.[4a,c]

2.2. Parallel and Sequential Evolution of Pathway Enzymes Using
a Biofoundry

The evolutionary landscapes for heterologous pathways, as evi-
denced by TAL mutants, can be complex and their directed evolu-
tion may frequently encounter local maxima. This phenomenon
has also been illustrated in the case of TEM1 𝛽-lactamase. A
variant of TEM1 𝛽-lactamase, possessing five mutations, exhib-
ited the ability to cleave cefotaxime.[4b] However, out of the 120
conceivable pathways leading to this 5-mutant variant, a mere
7% are evolutionarily accessible, as the majority traverse fitness
valleys where the mutation combinations diminish activity. Con-
trastingly, environmental alterations, which inherently reshape
the fitness landscape, have been shown to offer an escape from
these local maxima.[4a] Thus, it becomes crucial to reconfigure
the fitness landscape and pinpoint a distinct evolutionary tra-
jectory that enables feasible enhancement of the entire pathway.
The method employed should satisfy the following criteria: 1)
A single assay and output for all pathway enzymes, eliminating
the need for additional assay development; 2) The capability to
perform the assay in a high-throughput manner, ideally exceed-
ing 103–104; and 3) The potential for iterative application of the
method. In response to these requirements, we devised a method
that modifies the environment and evolution landscape by reduc-
ing the expression level of each enzyme individually (Figures 2c
and 3b). This alteration creates a fitness landscape with a sin-
gle, clear uphill trajectory, allowing recovery to the original
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Figure 2. Directed evolution of TAL as an example to evaluate potential epistasis of the heterologous naringenin biosynthetic pathway a) Naringenin
biosynthesis pathway: Tyrosine is transformed to naringenin by four enzymes: tyrosine ammonia-lyase (TAL), 4-coumarate-CoA ligase (4CL), chalcone
synthase (CHS) and chalcone isomerase (CHI). b) Various constructs were tested for narinengin production, with its original status as all four genes
were under the control of PT7 in the same pCDF plasmid and the dual-plasmid system where the individual gene under the control of PBAD promoter
was placed on plasmids with diverse copy numbers and co-expressed with the other three genes on pCDF. c) Influence of different plasmid copy numbers
on naringenin production. The TAL gene was placed in pBbS8C (SC101 replicon, 5–10 copies), pBbA8c (p15a replicon, 10–15 copies), pBbB8a (BBR1
replicon, 17–20 copies), pBbE5K (ColE1 replicon, 20–30 copies) and pRSF (RSF replicon, 100 copies). The parent strain contains the pCDF plasmid (CDF
replicon, 20 copies) with TAL, 4CL, CHS, and CHI genes. The highest producers are labeled with red arrows and the artificial pathway bottlenecks are
marked with blank arrows. The gray arrows indicate the expected evolutionary space. Naringenin concentrations were determined by HPLC in biological
triplicates and the error bars represent the standard deviation. d) TAL, when present in low copy number plasmid, was successfully evolved to produce
the same amount of naringenin as the positive control. TAL-26E7 is the candidate TAL mutant with the highest naringenin production, PC (+) strain,
positive control strain containing pBbE5K-TAL, and pCDF-4CL-CHS-CHI. NC (-), negative control strain containing plasmid pBbS8C-TAL and pCDF-
4CL-CHS-CHI. e) Investigating the potential epistasis of the TAL gene. The TAL gene and its mutants in pBbE5K (ColE1 replicon, 20–30 copies) plasmid
were transformed into competent cells harboring plasmid pCDF-4CL-CHS-CHI (4SI) or pCDF-4CL-11C1-CHS-9H9-CHI (4SI-M), respectively. Naringenin
concentrations were determined by HPLC in biological triplicates and the error bars represent the standard deviation.

activity level with high expression before any potential epistatic
interactions occur. The final product of the pathway serves as
an indicator of pathway performance (Figure S1, Supporting

Table 1. Kinetic properties of naringenin-associate genes and their mu-
tants.

Genes KM (mM) kcat (s−1) kcat/KM(mM−1s−1)

TAL 0.38 114.00 300.00

TAL-26E7(H174Q) 2.09 2416.00 1158.20

4CL 0.65 3.01*106 4.63*103

4CL-11C1 (L66P) 0.06 5.75*106 9.58*103

Information), which not only provides a direct measurement
but also facilitates high-throughput analysis using a biosensor,
chemical sensor, or high-throughput mass spectrometry. Lastly,
we have developed a biofoundry-based automation method to
expedite the iterative rounds of evolution (Figure S2, Supporting
Information).

As an effective infrastructure to automate the “design-build-
test-learn” cycle, the biofoundry has been widely applied to in-
crease experiment throughput and decrease human errors.[16]

Therefore, to enable the iterative evolution of naringenin path-
way enzymes, we designed a biofoundry with a liquid handler
system and a robotic arm-accessible incubator, centrifuge, plate
reader, and other accessories (complete list in Figure S2, Sup-
porting Information), as well as a stand-alone QPix 400 system
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Figure 3. Increased naringenin production by introducing de-novo pathway bottleneck. (a) The various constructs tested for narinengin production, with
its original status as all four genes were under the control of PT7 in the same pCDF plasmid and the dual-plasmid system where individual gene under
the control of PBAD promoter was placed on plasmids with different copy numbers and co-expressed with the other three genes on pCDF. (b) Influence
of different plasmid copy numbers on naringenin production. Individual genes were placed in pBbS8C (SC101 replicon, 5–10 copies), pBbA8c (p15a
replicon, 10–15 copies), pBbB8a (BBR1 replicon, 17–20 copies), pBbE5K (ColE1 replicon, 20–30 copies) and pRSF (RSF replicon, 100 copies). Parent
strain contains the pCDF plasmid (CDF replicon, 20 copies) with TAL, 4CL, CHS and CHI genes. The highest producers are labeled with red arrows, and
the artificial pathway bottlenecks are marked with blank arrows. The gray arrows indicate the expected evolutionary space. Naringenin concentrations
were determined by HPLC in biological triplicates, and the error bars represent the standard deviation.

for colony picking and a stand-alone liquid chromatograph for
product quantification. The automated workflow for the bio-
foundry was developed (Videos S1–S4, Supporting Information),
starting with the inoculation of about 5000 clones for each en-
zyme from an agar plate containing a random mutagenesis li-
brary of the corresponding genes into a 96-deep well plate with
0.8 mL MOPS medium (Figure S3 and Video S1, Supporting In-
formation). The resulting 50 96-well plates were then transferred
into an automatic incubation system and incubated at 800 rpm
and 30°C overnight (Figure 4a). The cultures were then diluted
(1% v/v) into 96-deep well plates with 0.8 mL MOPS and incu-
bated at 800 rpm and 30°C for 2 days (Figure S4 and Video S2,
Supporting Information). The plates were then moved to an au-
tomatic centrifuge to separate the supernatant from the pellet,
from which 100 μL supernatant was retrieved for the Al3+ assay
(Figures S1 and S5 and Video S3, Supporting Information).[17] An
algorithm was developed to identify hits with higher Al3+ signals
than that of the corresponding control. The pellets of these hits
were resuspended, and an equal volume of ethanol was added to
each well. The plates were then vortexed at 800 rpm for 1 min
and then incubated for 30 min at room temperature to facili-
tate cell lysis and product extraction. The supernatant containing
naringenin was collected by centrifugation for HPLC validation
(Figure S6 and Video S4, Supporting Information). The mutants
with higher titers by HPLC were then sequenced and used for
downstream experiments. The whole automation process lasts
for 2 weeks per round with a throughput of about 11 000 colonies
(115 96-deep wells) per run without a production schedule, allow-

ing in theory the parallel evolution of 2 genes with 5000 colonies
each or 1 gene with 10000 colonies each.

To evaluate the reliability of the automated workflow, we per-
formed a head-to-head comparison between manual and auto-
mated experiments, monitoring three key indicators (OD600 for
cell growth, Al3+ assay signal for primary screening accuracy, and
naringenin concentration for extraction efficiency). Ten strains
with different levels of naringenin titers from Figure 1 were
selected for evaluation. It has been shown that no significant
growth difference was observed between hand-inoculated and
incubated cultures versus the same strains processed using au-
tomation (Figure S7a, Supporting Information). The Al3+ assay
(Figure S7b, Supporting Information) and the naringenin ex-
traction assay (Figure S7c, Supporting Information) also demon-
strated a high correlation between manual and automated exper-
iments, with an R2 of 0.986 and 0.983, respectively (Figure S8,
Supporting Information). Thus, the workflow was then used for
the automated directed evolution of 4CL, CHS, and CHI with ar-
tificial bottlenecks. Before that, we assessed the evolvability and
evolutionary ceiling for these three enzymes through processes
that were similar to that of TAL (Figures 2c and 3b). The result
indicated that 4CL and CHS were bottlenecks when their genes
were expressed from a plasmid with SC101 origin (Figure 3b);
they were evolvable as the reason for these bottlenecks was solely
because of their insufficient expressions (Figure 3b). The activi-
ties of these enzymes whose genes were expressed from SC101
plasmids could be improved by at least 2.85- and 4.15-fold, re-
spectively (Figure 3b). Therefore, 4CL and CHS were sequentially
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Figure 4. Biofoundray-assisted engineering of 4CL and CHS genes in controllable evolutionary space, and investigation of inter-gene epistasis. a) Au-
tomation workflow for high throughput screening of mutants of the de-novo pathway bottleneck. This automation procedure contains four steps: 1)
picking candidate mutants using a QPix 400 (Video S1, Supporting Information); 2) transferring the overnight culture into fresh fermentation broth
(Video S2, Supporting Information); 3) screening candidate mutants using an Al3+ assay (Video S3, Supporting Information); and 4) analyzing narin-
genin titers using HPLC (Video S4, Supporting Information). b) 4CL was successfully evolved to produce the same amount of naringenin as the positive
control. 11C1 is the candidate 4CL mutant with higher naringenin production, PC (+) strain, positive control strain containing pCDF-TAL-4CL-CHS-CHI.
NC (-), negative control strain containing pBbS8C-4CL and pCDF-TAL-CHS-CHI. c) Investigating the potential epistasis of 4CL gene. 4CL gene and the
candidate mutant in pBbB8a plasmid were transformed into competent cells with plasmid pCDF-TAL-CHS-CHI (TSI) and pCDF-TAL-26E7-11C1-CHS-
9H9-CHI (TSI-M), respectively. d) CHS was successfully evolved to produce the same amount of naringenin as the positive control. 9H9 is the candidate
CHS mutant with higher naringenin production, PC (+) strain, positive control strain containing pBbE5K-CHS and pCDF-TAL-4CL-CHI. NC (-), negative
control strain containing pBbS8C-CHS and pCDF-4CL-CHS-CHI. (e) Investigate the potential epistasis of CHS gene. CHS gene and the candidate mu-
tant in pBbE5K plasmid were transformed into competent cells with plasmid pCDF-TAL-CHS-CHI (TSI) or pCDF-TAL-26E7-11C1-CHS-9H9-CHI (TSI-M),
respectively. Naringenin concentrations were determined by HPLC in biological triplicates and the error bars represent the standard deviation.

evolved using the automated workflow (Figure 4a). Random mu-
tagenesis libraries of each gene were constructed in the low copy
pBbS8C (Figure 3). We expected that the increase in the enzyme
activity should increase the naringenin production to the same
level as if these enzymes were overexpressed since all other condi-
tions remained the same. Therefore, the corresponding plasmid
harboring the same gene with the origin that resulted in the high-
est titer was used as a positive control, as these titers should be the
minimum reachable evolutionary outcome (Figures 3b and 4b,d).
In total, 12 and 57 positive hits with higher Al3+ assay signals than
the corresponding controls were identified for 4CL and CHS, re-
spectively, from which the top 5 and 2 mutants, respectively, were
further validated by HPLC to produce more naringenin. Their
mutation sites were revealed by sequencing (Table S3, Support-
ing Information). The highest titers were obtained with mutants
4CL-11C1 and CHS-9H9 which were close to their correspond-
ing positive control (Figure 4b,d), demonstrating the success of
the artificial bottleneck strategy and implying the possibility of
an evolutionary boundary by epistasis. Above results also demon-
strated that the automation platform’s high throughput and low
error rate make it easily expandable for multiple rounds or it-
erative enzyme engineering, as well as the evolution of more
complex pathways with multiple enzymes, especially when used
in conjunction with a target molecule that has fluorescence or

colorimetric reporting capabilities.[16a] The naringenin titers of
these mutants were 3.00-, and 4.83-fold enhanced in comparison
with wild-type 4CL and CHS, respectively (Figure 4b,d). We then
evaluated the kinetic parameters of these mutants, and the results
are summarized in Table 1. While kcats were improved for all mu-
tants, the KM for CHS-9H9 was slightly increased, indicating a
weaker binding affinity for their substrates. The kcat/KM for 4CL-
11C1 and CHS-9H9 were 9583 and 1435 mM−1⋅s−1, which were
2.07- and 4.16-fold increase compared with their wild-type coun-
terparts, respectively (Supplementary Tables S4–S6, Supporting
Information). We also noticed that the mutated residues of TAL
and CHS were located away from their catalytic centers, suggest-
ing that the high throughput automation workflow could be used
as an efficient tool to explore previously unknown sites (e.g., dis-
tal sites from the active center) that might not be predicted by
rational design.

2.3. Investigation of Inter-Gene Epistasis

While high levels of epistasis are typically viewed as constraints
on evolution, with enhancements in highly epistatic traits being
perceived as having diminished evolvability, the actual extent of
pairwise inter-gene epistasis remains a contentious topic. This
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is particularly true for heterologous pathways that incorporate
genes from diverse species and thus, disparate evolutionary back-
grounds. Following our evolutionary experiments, we conducted
a combinatorial study to assess the prevalence of inter-gene epis-
tasis within heterologous pathway genes.

We evaluated the wild-type TAL and its seven enhanced vari-
ants in two distinct contexts: one with 4CL and CHS in their wild-
type sequences, and another with their improved versions, 4CL-
11C1 and CHS-9H9. As shown in Figure 2e, all seven enhanced
TAL variants exhibited significantly lower naringenin production
in the presence of wild-type 4CL and CHS (4SI group). Con-
versely, the wild-type TAL demonstrated marginally higher pro-
duction when paired with the improved 4CL and CHS. Among all
the TAL mutants, TAL-26E7 or −28D11 showed strong sign epis-
tasis with 4CL-11C1 and CHS-9H9 mutants, while the remain-
ing TAL mutants displayed varying degrees of positive epistasis
(Figure S9, Supporting Information). We also examined the im-
proved 4CL and CHS mutants in similar contexts. 4CL-11C1 ex-
hibited a slight negative epistasis with TAL-26E7 + CHS-9H9,
while CHS-9H9 displayed reciprocal sign epistasis with TAL-
26E7 and 4CL-11C1 (Figure 4c,e). Although our analyses were
limited in scope, they underscored the presence of complex epis-
tasis among heterologous pathway genes. These complex epis-
tases significantly hindered the evolution of multiple enzymes in
a given heterologous pathway, trapping the evolution outcome in
a local maximum.[4b,c,6a] Furthermore, directed evolution with a
randomized mutant library has often been described as “luck”
or “chance”, as it is difficult, if not impossible, to predict the
outcome of a given directed evolution task.[4a,5a,8] Above phe-
nomenon requires us to reduce the uncertainty of each directed
evolution task by treating each pathway enzyme individually and
creating an artificial bottleneck in the pathway to set the enzyme
to be evolved in a well-controlled evolutionary trajectory, where a
clear lower-bound of its evolutionary space was known to reduce
the intrinsic randomness of the directed evolution process.[6a]

This also highlights the necessity for a method that can create
predictable evolutionary trajectories, enabling the improvement
of these pathways in a more controlled manner. The combination
of three mutant enzymes resulted in higher naringenin produc-
ers, also showing the robustness of our methodology.

2.4. ProEnsemble Improves Naringenin Production by Promoter
Engineering to Further Relax the Epistasis

With all the above-mentioned epistases, we suspected that the
directed evolution of three enzymes may further disrupt the
metabolic flux. Therefore, we further optimised the expression
of each pathway enzyme by promoter engineering with the aid of
a machine learning algorithm ProEnsemble to improve the pro-
duction of naringenin.[3a,18] We first selected 42 reported promot-
ers with a broad dynamic range from the literature and validated
their strength using a mKate2 reporter[19] (Figure S10, Sup-
porting Information). Twelve promoters with varying strengths
were then selected for downstream experiments, which were
classified into three groups (high, medium and low strength).
The strongest promoter was P23104, which exhibited a higher
fluorescence than PT7 and PBAD at 24 h, whereas the lowest flu-
orescence was observed for PrrnA, indicating a 211-fold dynamic

range for all the selected promoters (Figure S11, Supporting
Information).

A previously reported Golden Gate method, which used
mKate2 and ccdB as reporters to ensure high-efficiency promoter
and pathway assembly,[20] was used to generate a random pro-
moter library for the naringenin pathway. Of the 20 sequenced
random clones, we achieved a 100% assembly success rate with
a diverse set of promoters. As it required a sampling of more than
267000 clones to achieve a 95% probability to cover the whole li-
brary, which would be difficult to perform even with automation,
we collected a subset of the library and used a machine learning
algorithm to optimise the promoter combination. A previously
reported Al3+ assay was used to screen for variants with higher
naringenin titers.[17] In this assay, the presence of Al3+ in a su-
pernatant containing naringenin results in an absorption peak
at 373 nm. This signal can be employed to approximate the con-
centration of naringenin. Notably, the signal ranges from 0.01 to
1.34 for naringenin concentrations between 0 and 1500 mg L−1

(Figure S1, Supporting Information). To avoid being trapped in a
local maximum, we collected a balanced dataset with a focus on
high naringenin production from about 1000 screened mutants
using the Al3+assay. A total of 108 mutants with an Al3+ signal
higher than 0.2 (corresponding to 130 mg L−1 Naringenin) were
selected to represent high producers, whereas fifty samples with
an Al3+ signal less than 0.2 were randomly picked from each plate
to improve the generalizability of the model. In total, 158 mutants
were selected as hits, and their naringenin titers were validated
by HPLC, which ranged from 50.8 to 1044 mg L−1 (Extended
Data Tabel S1, Supporting Information). The highest titer was
produced by NAR1.0, which used P1–29 for TAL-26E7, P1–16 for
4CL-11C1, P1–17 for CHS-9H9, and PtrxA for CHI, and it was 4.44-
fold higher than the control with three mutant enzymes under
PT7. These results demonstrated the presence of an imbalanced
metabolic flux and emphasized the importance of promoter op-
timization.

Next, we proposed a promoter combinations prediction
framework called ProEnsemble, which is based on Ensemble
models[21] (Figure 5). ProEnsemble was designed with repre-
sentative base estimators, and their prediction results were in-
tegrated for better accuracy. Specifically, we evaluated the Root
Mean Square Error (RMSE) of 13 base estimators based on the
tenfold cross-validation of the abovementioned dataset with 158
mutants (Figure 5a,b). All base estimators were then sorted by
their RMSE from low to high. Any base estimator that yielded
an averaged naringenin prediction with decreased overall RMSE
was integrated into the model. The optimal model is the en-
semble of gradient boosting regressor, ridge regressor, gradient
boosting with categorical features regressor, lasso regressor and
extreme gradient boosting regressor, which showed a minimum
RMSE of 135 (Data Tabel S2, Supporting Information). The Pear-
son’s Correlation Coefficient (PCC) also demonstrated a better
correlation between the experimentally measured values and pre-
dicted values with the optimised model.

Five top hits from the ProEnsemble model prediction all pro-
duced a naringenin titer above 700 mg L−1. In contrast, only five
out of 960 random samples from the first-round analysis exhib-
ited similar activity, highlighting the effectiveness of the model.
However, none of the hits outperformed the top strain NAR1.0
(Data Tabel S3, Supporting Information). An imbalance was
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Figure 5. ProEnsemble improves naringenin production by optimizing the promoter combinations of the engineered pathway. a) Data collection for
machine learning. 158 strains with diverse naringenin production were pre-screened from ten 96-deep wells using the Al3+ assay. The promoter com-
bination and naringenin production were determined using Sanger sequencing and HPLC, respectively, and these two datasets were used to train the
ProEnsemble model. b) Scheme of the ProEnsemble model. The Root Mean Square Errors (RMSEs) of 13 base estimators were evaluated based on a
tenfold cross-validation of the prepared dataset. All base estimators were then sorted by their RMSE from low to high, which were sequentially integrated
into the model if the averaged naringenin prediction from the model with this specific estimator decreased the overall RMSE. The optimal model was the
ensemble of gradient boosting regressor, ridge regressor, and gradient boosting. c) The initial and enhanced dataset for ProEnsemble model. There was
an imbalance between the number of samples with high and low naringenin production in the initial dataset, which may decrease the ProEnsemble effi-
ciency to accurately predict the promoter combinations of higher titers. Therefore, an enhanced dataset was collected to solve this issue. d) The Pearson’s
Correlation Coefficient (PCC) of the measured naringenin concentrations versus the predicted values by the optimal ProEnsemble model. e) Naringenin
productions in diverse strains. NAR2.X strain, the top five strains as predicted by ProEnsemble model. NAR1.0, the strain with the highest naringenin
production from the initial dataset. K, the strain with the naringenin-associated genes under the control of PT7. Naringenin concentrations were deter-
mined by HPLC in biological triplicates and the error bars represent the standard deviation. f) The fed-batch fermentation of NAR2.0 and K strains. K, the
strain with the naringenin-associated genes under the control of PT7. NAR2.0, the strain with the highest naringenin production in this study. Naringenin
concentrations were determined by HPLC from three independent fed-batch fermentations and the error bars represent the standard deviation.

observed in the distribution of samples with high and low narin-
genin production levels, which may hinder the model’s accuracy
in predicting promoter combinations for higher naringenin pro-
duction (Figure 5c). Only 26% of the library showed naringenin
production above 400 mg L−1. To address this issue, 68 additional
samples with an Al3+signal above 0.3 were collected from another
1500 clones (Data Tabel S4, Supporting Information). We further
optimised the model by expanding the training set with the in-
clusion of results with naringenin titers higher than 400, 500,
600, 700 and 800 mg L−1, respectively. The best performance was
achieved by adding 27 data points above 600 mg L−1 to the ini-
tial dataset, which was even better than when all the data points
were added (Data Tabel S2, Supporting Information). The mod-
ified dataset slightly increased the RMSE by 5.16% compared to
the initial dataset, while the PCC was improved from 74% to 82%,
showing the importance of a balanced sample distribution to the
model performance (Figure 5d). Five top hits predicted by the im-
proved model all showed high naringenin production, with the
highest titer of 1.21 g L−1 for NAR2.0, which was 16% higher than
that of strain NAR1.0 and 5.16-fold higher than that of the initial
constructs without promoter optimization (Figure 5e). It is not-
ing that more than 99.11% of the strains in the random promoter
libraries produced lower naringenin titers than 1 g L−1, suggest-
ing ProEnsemble could significantly improve our chance of dis-

covering better hits. The titer of NAR2.0 was also 5.92-fold higher
than that of strain WT2.0 (Figure S13, Supporting Information),
revealing that pathway evolution from the above bottlenecking-
debottlenecking strategy is beneficial for naringenin production.

Using the optimum promoter combination, fed-batch fermen-
tation was performed in a 1-L fermenter. As shown in Figure 5f,
the wild-type enzymes without promoter optimisation produced
an undetectable level of naringenin at 12 h and only 116 mg L−1

naringenin at 48 hours, while the mutants with optimised pro-
moters reached 660 mg L−1 in 12 hours and reached a peak
at 3.65 g L−1 at 48 h (Figure 5f). To our knowledge, this is the
highest titer in the literature for naringenin production directly
from tyrosine, which is 3.41-fold compared to the previous record
of directly from tyrosine and 3.02-fold compared to the previ-
ous record of fermentation with coumaric acid as intermediate
feeding.[22] Given that only the pathway enzymes and promoters
were modified in this work, future metabolic engineering has the
potential to further increase the naringenin titer.

2.5. Demonstration as a General Flavonoid Chassis

We further demonstrated that the optimised constructs could
serve as a versatile flavonoid chassis by producing four different
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Figure 6. Production of other flavonoids using the naringenin host. (a) Pathways of the candidate flavonoids, including resveratrol, genistein and saku-
ranetin. Tyrosine can be converted to resveratrol by three genes, including tyrosine ammonia-lyase (TAL), 4-coumarate-CoA ligase (4CL) and stilbene
synthase (STS). Genistein can be biosynthesized from naringenin by overexpressing 2-hydroxyisoflavanone synthase (IFS), cytochrome P450 enzyme re-
ductase (CPR) and 2-hydroxyisoflavanone dehydratase (HID). Sakuranetin can be produced by overexpressing O-methyltransferase, NOMT. Naringenin
is converted to hesperetin by overexpressing flavonoid 3′-hydroxylase (F3′H), cytochrome P450 reductase (CPR) and O-methyltransferase (MpOMT). (b)
Flavonoid production in diverse strains. RES, resveratrol biosynthesis strain; GEN, genistein biosynthesis strain; SAK, sakuranetin biosynthesis strain;
HES, hesperetin biosynthesis strain. The concentrations of each target compounds were determined by HPLC in biological triplicates and the error bars
represent the standard deviation.

flavonoids via different intermediates in the naringenin pathway,
including resveratrol from coumaroyl-CoA and genistein, saku-
ranetin, and hesperetin from naringenin (Figure 6; Table S11,
Supporting Information). The same constructs used in previ-
ous literature were used for a fair comparison, although mul-
tiple additional strategies were also utilized in those studies.
To produce resveratrol, the stilbene synthase from Vitis vinifera
(VvSTS) under the control of PT7 in the pETduet-1 vector was
transformed into competent cells with TAL-26E7 and 4CL-11C1
to complete its biosynthetic pathway (Note S4, Supporting In-
formation). Without any other metabolic engineering, the re-
sulting strain produced 82.1 mg L−1 resveratrol, significantly
higher than the 35.0 mg L−1 observed from a previous resver-
atrol producer with an engineered malonyl-CoA supply from
malonate,[23] and comparable to the 80.4 mg L−1 produced
by a previous resveratrol producer with an engineered tyro-
sine supply module.[24] Similarly, 2-hydroxyisoflavanone syn-
thase from Lotus japonicus KKK-LjtIFS, 2-hydroxyisoflavanone
dehydratase from Glycine max GmHID and cytochrome P450
reductase from Lotus japonicus OmpAL-LjtCPR were introduced
to the NAR2.0 strain according to the literature for genistein
production.[25] O-methyltransferase NOMT from Oryza sativa L.
cv. Nakdong was introduced into the NAR2.0 strain to obtain a
sakuranetin producer.[26] Flavonoid 3′-hydroxylase (F3’H) from
Gentiana triflora, cytochrome P450 reductase (CPR) from Ara-
bidopsis thaliana and O-methyltransferase MpOMT from Mentha
piperita were overexpressed for hesperetin biosynthesis.[27] The
resulting strains generated 77.9 mg L−1 genistein, 223 mg L−1

sakuranetin and 82.5 mg L−1 hesperetin, which were 1.28-fold,
1.29-fold, and 2.22-fold higher, respectively, than the highest
titers in the literature, which employed more complicated engi-
neering steps and co-culture strategies (Table S11, Supporting In-
formation).

3. Conclusion

In summary, we have investigated the epistasis among heterolo-
gous pathway genes and proposed a clear evolutionary trajectory

for pathway evolution at a controllable space. We have further
demonstrated the feasibility of a strategy combining biofoundry-
assisted pathway bottlenecking and debottlenecking to separate
the target enzyme from other factors which may interfere with
its evolution, followed by machine learning-based promoter opti-
mization to significantly enhance pathway flux. By utilizing this
strategy, a parallel evolution of all naringenin pathway enzymes
along a predictable evolutionary trajectory in six weeks, whose
epistasis was further relaxed by ProEnsemble algorithm, leading
to a final naringenin titer of 1.21 g L−1 in 96-deep well plates and
3.65 g L−1 in fed-batch fermentation. The titer surpassed all pre-
viously reported results in the literature. We have also demon-
strated the potential of this optimal strain as an effective chassis
for flavonoids production. This approach can be readily adapted
for any given metabolic pathway, paving the way for automated
chassis construction in contemporary biofoundries.

4. Experimental Section
Strains and Cultivation Conditions: The plasmids and strains used in

this study are summarized in Tables S1 and S2 (Supporting Information).
Escherichia coli DH5𝛼 was chosen as the host for plasmid construction.
Antibiotics (50 μg mL−1 streptomycin and 25 μg mL−1 chlorampheni-
col) were used for plasmid maintenance. E. coli BL21(DE3) was used
for gene expression in MOPS (3-(N-morpholino)propanesulfonic acid)
medium as described previously.[17,28] Luria-Bertani (LB; 10 g L−1 tryp-
tone, 10 g L−1 NaCl, and 5 g L−1 yeast extract) medium was used for
strain maintenance and seed propagation. All chemicals were reagent
grade and purchased from Sigma–Aldrich (St. Louis, MO, USA). Molec-
ular manipulation-associated reagents, such as T4 ligase and BsaI, were
purchased from NEB (Beverly, MA, USA).

Parallel Evolution of all Pathway Enzymes by Automation: Error-prone
PCR was used to generate the mutation libraries using a GeneMorph II
Random Mutagenesis Kit (Agilent Technologies, Santa Clara, CA, USA).
The low mutation frequency (0-5 mutations/kb) was obtained by regulat-
ing the initial target gene amounts (100 ng) and the fewer cycle numbers
(25 cycles). Phata polymerase (Nanjing, Jiangsu, China) was used to lin-
earize the pBbS8C plasmids. Based on the homology between the error-
prone PCR products and the linearized pBbS8C, the mutation libraries
were constructed by Gibson assembly. The individual mutation libraries
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were further transformed into the relevant competent cells and spread on
LB agar plates (Table S1, Supporting Information).

The automated workstation comprised 14 pieces of equipment
(Figure S3, Supporting Information), where the spinnaker and liquid han-
dler system were connected to diverse devices, including an incubator,
centrifuge, and microplate reader. This automated workstation was used
to screen the mutation library (Figures S4–S7 and Video S1–S4, Support-
ing Information). In detail, the mutants from LB agar plates were automat-
ically distinguished using QPix 400 based on the sizes, roundness, and dis-
tances with the adjacent stains. The QPix 400 system was then employed
to pick mutant clones (≈5000 clones for the individual evolving gene) into
the 96-deep well plates with 0.8 mL LB medium (Figure S4 and Video S1,
Supporting Information). The resulting 96-deep well plates were incubated
at 800 rpm and 30 °C overnight. Then, an aliquot of the culture was in-
oculated (1% v/v) into 96-deep well plates with 0.8 mL MOPS medium,
and the plates were incubated at 800 rpm and 30 °C for 2 days (Figure S5
and Video S2, Supporting Information). After this, the 96-deep well plates
were centrifuged at 5 000 rpm for 10 min (Figure S6 and Video S3, Sup-
porting Information). The naringenin content of the cultures in the 96-well
plates was evaluated using an Al3+assay (Figures S2 and S6 and Video S3,
Supporting Information).[17] The Momentum software ensured that the
computer automatically calculated the naringenin content of the individ-
ual 96-deep wells based on a spectrophotometry assay of Al3+ absorption.
Then, the computer marked the candidate mutants, whose Al3+ signal
thresholds were higher than that of the corresponding control data of the
TAL (0.15), 4CL (0.08), and CHS (0.05) mutation libraries. Then, the liquid
handler system resuspended the marked hits and transferred 300 μL per
well of fermentation broth into the new 96-deep well plates (Figure S7 and
Video S4, Supporting Information). An equal volume of ethanol was added
into the individual wells, and the plates were vortexed twice at 800 rpm for
1 min each. The mixture was placed at room temperature for 30 min and
centrifuged at 5,000 rpm for 10 min. Approximately 500 μL of supernatant
was used for HPLC validation (Figure S7 and Video S4, Supporting Infor-
mation). Those mutants with higher titers by HPLC were chosen for the
following experiments and sequenced.

HPLC Methods for Naringenin Detection: Naringenin titers were de-
tected at 290 nm using an Agilent 1260 HPLC system (Waldbronn, Ger-
many) equipped with a diode array detector (DAD) 1260 model VL +
(G7115A) and a C18 column (3 × 100 mm 2.7 μm). The column was eluted
with gradient elution at 30°C and 0.3 mL min−1 flow rate: 10% to 40%
acetonitrile/water (vol/vol) for 5 min, 40% acetonitrile (vol/vol) for 7 min,
40% to 95% acetonitrile (vol/vol) for 3 min, and 95% to 10% acetonitrile
(vol/vol) for 3 min. It was noted that 0.3% acetic acid (vol/vol) was added
to above mobile phases, including the acetonitrile or water, which con-
tributed to naringenin separation.

Determination of Enzymatic Kinetic Parameters: The clones of wild-type
genes and mutants were incubated at 37 °C overnight and 200 rpm in
LB media. About 1% inoculation dose of different samples was trans-
ferred into 250 mL shake flasks with 100 mL LB media. Isopropyl 𝛽-D-
Thiogalactoside (1 mm) was added into flasks until the strains reached
OD600 of 0.6. These strains were further incubated for 10 h at 16 °C and
100 rpm. Then, the inducible strains were lysed by ultrasonication. The
purified proteins were obtained by the standard protocol of BeaverBeads
IDA-Nickel (Beaver, Boston, USA).

Enzyme kinetic parameters of TAL and the mutant were determined
using the method from Zhou et al.[15] In detail, the wild-type TAL and mu-
tants were tested in a 200 μL reaction volume. The purified protein (1 μg)
was added into reactions comprising 90 μL Tris-HCl buffer (50 mm, pH
8.5) and different concentrations of L-tyrosine. The mixture was cultured
at 40 °C for 30 min and monitored for the appearance of coumaric acid at
315 nm.[15] One unit of enzyme activity is defined as 1 μm p-coumaric acid
production in one minute.

Enzymatic kinetic parameters of 4CL and the mutant were determined
using the method from Alberstein et al.[29] The reaction system comprised
the purified protein (1 μg), 5 mm ATP, 5 mm MgSO4, 5 mm CoA, and
different concentrations of p-coumaric acid in Tris-HCl buffer (0.4 m, pH
7.8). The mixture without CoA was chosen as the control. The reaction was

cultured at 30 °C. The production of p-coumaroyl CoA was determined at
333 nm.

Enzymatic kinetic parameters of CHS and the mutant were determined
using the method from Kong et al. with some modification.[30] The reac-
tion system contained the purified protein (1 μg), 200 μm malonyl-CoA,
and different concentrations of p-coumaroyl-CoA in potassium phosphate
buffer (0.1 m, pH 7.0). The reaction mixture was cultured at 30°C and
450 rpm for 4 h in the dark. Then an equal volume of ethanol was added to
the mixture. Naringenin chalcone was determined using the HPLC method
described above. Kinetic parameters of different proteins, including Km,
Vmax, and Kcat/Km, were calculated using Lineweaver-Burk plots.

Further Relax the Epistasis of the Evolved Pathway Using ProEnsemble
Framework-Mediated Promoter Engineering: Promoters with different ex-
pression strengths were used to optimise the engineered naringenin path-
way. To simplify the promoter choice, those promoters were screened
that had been previously reported.[19] these promoters were cloned into
pBbS8C-mKate2 (Note S2, Supporting Information) and transformed
them into BL21(DE3). Diverse strains were picked into 96-deep wells with
800 μL of LB media and cultured at 30 °C overnight. Then 8 μL fermen-
tation broths were transferred into 96-deep wells with 0.8 mL MOPS me-
dia and incubated at 30 °C. Fluorescence signals of the mKate2 protein
were measured using excitation and emission filters of 588 and 633 nm,
respectively.[31] Optical density was tested at 600 nm to evaluate the strain
growth status. The PT7 and PBAD promoters were chosen as the control
promoters. Based on the fluorescence strength variances, 12 promoters
were screened and divided them into three types, including weak, medium,
and strong promoters (Figures S9 and S10, Supporting Information).

Promoter engineering was further employed to balance the engineered
naringenin pathway. HamediRad and coworkers had determined that link-
ers with higher affinity and specificity can contribute to the efficiency of
Golden Gate assembly.[32] Therefore, five 4-bp linkers (ATCT, GCTG, CGCT,
TCAT, and GAGT) were used to ensure a higher efficient promoter library
(Note S3, Supporting Information).[32] Next, the backbone plasmid was
equipped with mKate2 and ccdB proteins. The ccdB protein could lock
up DNA gyrase by damaging double-stranded DNA, which ultimately trig-
gers the death of negative clones with the backbone plasmid.[33] Thus,
the amounts of clones with ccdB protein grew on the plates, whereas no
red morphology of the negative clones was found (Note S3, Supporting
Information). Then, the promoter library was prepared by mixing the can-
didate plasmids in equal proportions. Strains with diverse naringenin pro-
ductions were prescreened from ten 96-deep wells of the promoter library
based on the differences in their Al3+ assay.[17] The actual naringenin pro-
duction was determined using the above HPLC method.

In ProEnsemble, the goal was to establish the relationship between
diverse promoter combinations and naringenin production. 12 different
types of promoters were encoded using one-hot encoding (Table S7, Sup-
porting Information). The corresponding label was naringenin produc-
tion, which was a continuous numerical value from tens to thousands. For
greater prediction performance, as many base estimators as possible were
selected. Specifically, 13 representative models ranging from simple linear
models to complicated ensemble models were chosen, containing ridge
regressor, lasso regressor, k-neighbors regressor, support vector regres-
sor, decision tree regressor, random forest regressor, extra trees regres-
sor, adaptive boosting regressor, bootstrap aggregating regressor, gradi-
ent boosting regressor, extreme gradient boosting regressor, light gradient
boosting regressor, and gradient boosting with categorical features regres-
sor. The Root Mean Square Error (RMSE) of 13 base estimators based on a
tenfold cross-validation of the initial dataset was compared first. For better
integration of these base estimators, which placed in descending order by
error. The base estimators were successively added to the ensemble model
if the error was reduced. The final prediction value of naringenin pro-
duction was averaged using the selected models. Additionally, RMSE and
Pearson Correlation Coefficient (PCC) were selected as evaluation metrics
in Equations (1) and (2), where yie denotes the experimentally measured
naringenin production, yip denotes the predicted naringenin production,
ȳe denotes the average of the naringenin production, ȳp denotes the aver-
age of the predicted naringenin production and n denotes the number of
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samples. The link of ProEnsemble framework is placed at the correspond-
ing website (https://github.com/Luo-SynBioLab/ProEnsemble).

PCC = 1
n

∑n
i=1 (yie − ȳe)

(
yip − ȳp

)
√∑n

i=1 (yie − ȳe)2
√∑n

i=1

(
yip − ȳp

)2
(1)

RMSE =

√∑n
i=1

(
yie − yip

)2

n
(2)

Bioreactor Production: To further evaluate the naringenin production
of the engineered strains, a batch bioreactor experiment was carried out
in a DASGIP MX4/4 bioreactor system (Eppendorf, Hamburg, Germany).
Before incubation, the process parameters were set at 400 rpm, 30 °C,
and pH 7.0. The zero signal of the pO2 electrode was calibrated at 0%. In
contrast, a stirrer speed of 1200 rpm was used as the 100% level of pO2
electrode. About 1 mL of the antifoaming agent was added. The bioreac-
tor production was performed using the following process. A single clone
was resuspended in a 500 mL flask with 100 mL LB media and cultured
overnight at 200 rpm and 30 °C. The fermentation broth was centrifuged
when the strains reached the logarithmic growth phase. The supernatant
was discarded, and the strains were resuspended in MOPS media and
transferred to the bioreactor. The temperature was kept at 30 °C. The pH
was automatically maintained at 7.0 by the addition of 2 m ammonium hy-
droxide and 0.5 M H2SO4. Samples of approximately 5 mL were regularly
removed to evaluate the growth status and metabolite production.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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