Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Backscatter tensor imaging and 3D speckle tracking for simultaneous ex vivo structure and deformation measurement of myocardium.

Abstract

OBJECTIVE: Biaxial mechanical testing is a common method for elucidation of mechanical properties of excised ventricular myocardium, especially in the context of structural remodeling that accompanies heart disease. Current imaging strategies in biaxial testing are based on optical camera imaging of the tissue surface, thus providing no information about the tissue microstructure and limiting strain measurements to two dimensions. Here, these limitations are overcome by replacing the camera with ultrasound imaging in order to measure both transmural fiber orientation and 3D tissue deformation during biaxial testing. METHODS: Quasi-static biaxial mechanical testing is applied to four samples of excised porcine ventricular myocardium (two left- and two right-ventricular tissues). During testing, a rotational scan of an ultrasound linear array provides data for both backscatter tensor imaging and 3D speckle tracking, from which transmural fiber orientation and tissue deformation are computed, respectively. Ultrasound-derived fiber orientation and tissue strain are validated against histology and camera surface imaging, respectively. DISCUSSION: Ultrasound-derived fiber angle and tissue strain exhibit good accuracy, with root-mean-square errors of 9.9° and 1.2% strain, respectively. Further investigation into the optimization of backscatter tensor imaging is warranted. Replacing the rotational scan of a linear array with volume imaging with a matrix array will improve the technique. CONCLUSION: Ultrasound imaging can replace the optical camera measurement during biaxial mechanical testing of ventricular myocardium in order to accurately provide measurements of transmural fiber orientation and tissue strain. In situ knowledge of transmural fiber structure and tissue deformation can enhance the inverse problem used to determine tissue mechanical properties from biaxial testing.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View