Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

New biochemical pathways for forming short-chain fatty acids during fermentation in rumen bacteria.

Abstract

Short-chain fatty acids (SCFA) are essential to cattle as a source of energy and for other roles in metabolism. These molecules are formed during fermentation by microbes in the rumen, but even after decades of study, the biochemical pathways responsible for forming them are not always clear. Here we review recent advances in this area and their importance for improving animal productivity. Studies of bacterial genomes have pointed to unusual biochemical pathways in rumen organisms. One study found that 8% of rumen organisms forming acetate, a major SCFA, had genes for a pathway previously unknown in bacteria. The existence of this pathway was subsequently confirmed biochemically in propionibacteria. The pathway was shown to involve 2 enzymes that convert acetyl-coenzyme A to acetate. Similar studies have revealed new enzymatic steps for forming propionate and butyrate, other major SCFA. These new steps and pathways are significant for controlling fermentation. With more precise control over SCFA, cows can be fed more precisely and potentially reach higher productivity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View