Skip to main content
eScholarship
Open Access Publications from the University of California

This series is automatically populated with publications deposited by UC Berkeley College of Environmental Design Department of Architecture researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of A Global Building Occupant Behavior Database

A Global Building Occupant Behavior Database

(2022)

This paper introduces a database of 34 field-measured building occupant behavior datasets collected from 15 countries and 39 institutions across 10 climatic zones covering various building types in both commercial and residential sectors. This is a comprehensive global database about building occupant behavior. The database includes occupancy patterns (i.e., presence and people count) and occupant behaviors (i.e., interactions with devices, equipment, and technical systems in buildings). Brick schema models were developed to represent sensor and room metadata information. The database is publicly available, and a website was created for the public to access, query, and download specific datasets or the whole database interactively. The database can help to advance the knowledge and understanding of realistic occupancy patterns and human-building interactions with building systems (e.g., light switching, set-point changes on thermostats, fans on/off, etc.) and envelopes (e.g., window opening/closing). With these more realistic inputs of occupants' schedules and their interactions with buildings and systems, building designers, energy modelers, and consultants can improve the accuracy of building energy simulation and building load forecasting.

Cover page of Resilient cooling strategies – A critical review and qualitative assessment

Resilient cooling strategies – A critical review and qualitative assessment

(2021)

The global effects of climate change will increase the frequency and intensity of extreme events such as heatwaves and power outages, which have consequences for buildings and their cooling systems. Buildings and their cooling systems should be designed and operated to be resilient under such events to protect occupants from potentially dangerous indoor thermal conditions. This study performed a critical review on the state-of-the-art of cooling strategies, with special attention to their performance under heatwaves and power outages. We proposed a definition of resilient cooling and described four criteria for resilience—absorptive capacity, adaptive capacity, restorative capacity, and recovery speed —and used them to qualitatively evaluate the resilience of each strategy. The literature review and qualitative analyses show that to attain resilient cooling, the four resilience criteria should be considered in the design phase of a building or during the planning of retrofits. The building and relevant cooling system characteristics should be considered simultaneously to withstand extreme events. A combination of strategies with different resilience capacities, such as a passive envelope strategy coupled with a low-energy space-cooling solution, may be needed to obtain resilient cooling. Finally, a further direction for a quantitative assessment approach has been pointed out.

Cover page of Ten questions concerning well-being in the built environment

Ten questions concerning well-being in the built environment

(2020)

Well-being in the built environment is a topic that features frequently in building standards and certification schemes, in scholarly articles and in the general press. However, despite this surge in attention, there are still many questions on how to effectively design, measure, and nurture well-being in the built environment. Bringing together experts from academia and the building industry, this paper aims to demonstrate that the promotion of well-being requires a departure from conventional agendas. The ten questions and answers have been arranged to offer a range of perspectives on the principles and strategies that can better sustain the consideration of well-being in the design and operation of the built environment. Placing a specific focus on some of the key physical factors (e.g., light, temperature, sound, and air quality) of indoor environmental quality (IEQ) that strongly influence occupant perception of built spaces, attention is also given to the value of multi-sensory variability, to how to monitor and communicate well-being outcomes in support of organizational and operational strategies, and to future research needs and their translation into building practice and standards. Seen as a whole, a new framework emerges, accentuating the integration of diverse new competencies required to support the design and operation of built environments that respond to the multifaceted physical, physiological, and psychological needs of their occupants.

Cover page of Chamber Bioaerosol Study: Outdoor Air and Human Occupants as Sources of Indoor Airborne Microbes

Chamber Bioaerosol Study: Outdoor Air and Human Occupants as Sources of Indoor Airborne Microbes

(2015)

Human occupants are an important source of microbes in indoor environments. In this study, we used DNA sequencing of filter samples to assess the fungal and bacterial composition of air in an environmental chamber under different levels of occupancy, activity, and exposed or covered carpeting. In this office-like, mechanically ventilated environment, results showed a strong influence of outdoor-derived particles, with the indoor microbial composition tracking that of outdoor air for the 2-hour sampling periods. The number of occupants and their activity played a significant but smaller role influencing the composition of indoor bioaerosols. Human-associated taxa were observed but were not particularly abundant, except in the case of one fungus that appeared to be transported into the chamber on the clothing of a study participant. Overall, this study revealed a smaller signature of human body-associated taxa than had been expected based on recent studies of indoor microbiomes, suggesting that occupants may not exert a strong influence on bioaerosol microbial composition in a space that, like many offices, is well ventilated with air that is moderately filtered and moderately occupied.