Skip to main content
eScholarship
Open Access Publications from the University of California

Open Access Policy Deposits

This series is automatically populated with publications deposited by UCLA David Geffen School of Medicine Department of Biological Chemistry researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of AlphaFold-assisted structure determination of a bacterial protein of unknown function using X-ray and electron crystallography.

AlphaFold-assisted structure determination of a bacterial protein of unknown function using X-ray and electron crystallography.

(2024)

Macromolecular crystallography generally requires the recovery of missing phase information from diffraction data to reconstruct an electron-density map of the crystallized molecule. Most recent structures have been solved using molecular replacement as a phasing method, requiring an a priori structure that is closely related to the target protein to serve as a search model; when no such search model exists, molecular replacement is not possible. New advances in computational machine-learning methods, however, have resulted in major advances in protein structure predictions from sequence information. Methods that generate predicted structural models of sufficient accuracy provide a powerful approach to molecular replacement. Taking advantage of these advances, AlphaFold predictions were applied to enable structure determination of a bacterial protein of unknown function (UniProtKB Q63NT7, NCBI locus BPSS0212) based on diffraction data that had evaded phasing attempts using MIR and anomalous scattering methods. Using both X-ray and micro-electron (microED) diffraction data, it was possible to solve the structure of the main fragment of the protein using a predicted model of that domain as a starting point. The use of predicted structural models importantly expands the promise of electron diffraction, where structure determination relies critically on molecular replacement.

Cover page of Protocol for organelle-specific cysteine capture and quantification of cysteine oxidation state.

Protocol for organelle-specific cysteine capture and quantification of cysteine oxidation state.

(2024)

Pinpointing functional, structural, and redox-sensitive cysteines is a central challenge of chemoproteomics. Here, we present a protocol comprising two dual-enrichment cysteine chemoproteomic techniques that enable capture of cysteines (Cys-LoC) and quantification of cysteine oxidation state (Cys-LOx) in a localization-specific manner. We describe steps for utilizing TurboID-mediated protein biotinylation for enrichment of compartment-specific proteins, followed by click-mediated biotinylation and enrichment of cysteine-containing peptides. Thus, changes to compartment-specific cysteine identification and redox state can be assessed in a variety of contexts. For complete details on the use and execution of this protocol, please refer to Yan et al. (2023).1.

Cover page of Aster-B-dependent estradiol synthesis protects female mice from diet-induced obesity

Aster-B-dependent estradiol synthesis protects female mice from diet-induced obesity

(2024)

Aster proteins mediate the nonvesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER). However, the importance of nonvesicular sterol movement for physiology and pathophysiology in various tissues is incompletely understood. Here we show that loss of Aster-B leads to diet-induced obesity in female but not in male mice, and that this sex difference is abolished by ovariectomy. We further demonstrate that Aster-B deficiency impairs nonvesicular cholesterol transport from the PM to the ER in ovaries in vivo, leading to hypogonadism and reduced estradiol synthesis. Female Aster-B-deficient mice exhibit reduced locomotor activity and energy expenditure, consistent with established effects of estrogens on systemic metabolism. Administration of exogenous estradiol ameliorates the diet-induced obesity phenotype of Aster-B-deficient female mice. These findings highlight the key role of Aster-B-dependent nonvesicular cholesterol transport in regulating estradiol production and protecting females from obesity.

Cover page of Unraveling the Structure of Meclizine Dihydrochloride with MicroED.

Unraveling the Structure of Meclizine Dihydrochloride with MicroED.

(2024)

Meclizine (Antivert, Bonine) is a first-generation H1 antihistamine used in the treatment of motion sickness and vertigo. Despite its wide medical use for over 70 years, its crystal structure and the details of protein-drug interactions remained unknown. Single-crystal X-ray diffraction (SC-XRD) is previously unsuccessful for meclizine. Today, microcrystal electron diffraction (MicroED) enables the analysis of nano- or micro-sized crystals that are merely a billionth the size needed for SC-XRD directly from seemingly amorphous powder. In this study, MicroED to determine the 3D crystal structure of meclizine dihydrochloride is used. Two racemic enantiomers (R/S) are found in the unit cell, which is packed as repetitive double layers in the crystal lattice. The packing is made of multiple strong N-H-Cl- hydrogen bonding interactions and weak interactions like C-H-Cl- and pi-stacking. Molecular docking reveals the binding mechanism of meclizine to the histamine H1 receptor. A comparison of the docking complexes between histamine H1 receptor and meclizine or levocetirizine (a second-generation antihistamine) shows the conserved binding sites. This research illustrates the combined use of MicroED and molecular docking in unraveling elusive drug structures and protein-drug interactions for precision drug design and optimization.

Cover page of Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy.

Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy.

(2024)

ATTR amyloidosis is caused by the deposition of transthyretin in the form of amyloid fibrils in virtually every organ of the body, including the heart. This systemic deposition leads to a phenotypic variability that has not been molecularly explained yet. In brain amyloid conditions, previous studies suggest an association between clinical phenotype and the molecular structures of their amyloid fibrils. Here we investigate whether there is such an association in ATTRv amyloidosis patients carrying the mutation I84S. Using cryo-electron microscopy, we determined the structures of cardiac fibrils extracted from three ATTR amyloidosis patients carrying the ATTRv-I84S mutation, associated with a consistent clinical phenotype. We found that in each ATTRv-I84S patient, the cardiac fibrils exhibited different local conformations, and these variations can co-exist within the same fibril. Our finding suggests that one amyloid disease may associate with multiple fibril structures in systemic amyloidoses, calling for further studies.

Cover page of Alveolar macrophage lipid burden correlates with clinical improvement in patients with pulmonary alveolar proteinosis.

Alveolar macrophage lipid burden correlates with clinical improvement in patients with pulmonary alveolar proteinosis.

(2024)

Pulmonary alveolar proteinosis (PAP) is a life-threatening, rare lung syndrome for which there is no cure and no approved therapies. PAP is a disease of lipid accumulation characterized by alveolar macrophage foam cell formation. While much is known about the clinical presentation, there is a paucity of information regarding temporal changes in lipids throughout the course of disease. Our objectives were to define the detailed lipid composition of alveolar macrophages in PAP patients at the time of diagnosis and during treatment. We performed comprehensive mass spectrometry to profile the lipid signature of alveolar macrophages obtained from three independent mouse models of PAP and from PAP and non-PAP patients. Additionally, we quantified changes in macrophage-associated lipids during clinical treatment of PAP patients. We found remarkable variations in lipid composition in PAP patients, which were consistent with data from three independent mouse models. Detailed lipidomic analysis revealed that the overall alveolar macrophage lipid burden inversely correlated with clinical improvement and response to therapy in PAP patients. Specifically, as PAP patients experienced clinical improvement, there was a notable decrease in the total lipid content of alveolar macrophages. This crucial observation suggests that the levels of these macrophage-associated lipids can be utilized to assess the efficacy of treatment. These findings provide valuable insights into the dysregulated lipid metabolism associated with PAP, offering the potential for lipid profiling to serve as a means of monitoring therapeutic interventions in PAP patients.

Cover page of MBD2 couples DNA methylation to transposable element silencing during male gametogenesis.

MBD2 couples DNA methylation to transposable element silencing during male gametogenesis.

(2024)

DNA methylation is an essential component of transposable element (TE) silencing, yet the mechanism by which methylation causes transcriptional repression remains poorly understood1-5. Here we study the Arabidopsis thaliana Methyl-CpG Binding Domain (MBD) proteins MBD1, MBD2 and MBD4 and show that MBD2 acts as a TE repressor during male gametogenesis. MBD2 bound chromatin regions containing high levels of CG methylation, and MBD2 was capable of silencing the FWA gene when tethered to its promoter. MBD2 loss caused activation at a small subset of TEs in the vegetative cell of mature pollen without affecting DNA methylation levels, demonstrating that MBD2-mediated silencing acts strictly downstream of DNA methylation. TE activation in mbd2 became more significant in the mbd5 mbd6 and adcp1 mutant backgrounds, suggesting that MBD2 acts redundantly with other silencing pathways to repress TEs. Overall, our study identifies MBD2 as a methyl reader that acts downstream of DNA methylation to silence TEs during male gametogenesis.

Cover page of The developmental gene Chordin is amplified and expressed in human cancers

The developmental gene Chordin is amplified and expressed in human cancers

(2023)

Chordin (CHRD) is a secreted protein important in early development, yet a role for CHRD in human disease has not been identified. In this study we investigated CHRD in cancer and normal adult tissues using the wealth of genome-wide data available in public databases. We found that Chordin is amplified in the DNA of specific cancers such as lung squamous cell and others, although copy number variation did not strictly correlate with higher mRNA expression. In some cancers, such as renal and stomach carcinomas, increased CHRD expression significantly correlated with poor survival. In normal adult human tissues, CHRD mRNA was highest in hepatocytes. Crossveinless-2/BMPER, a component of the Chordin morphogenetic pathway expressed at the opposite side in embryos, was expressed in liver stellate cells. This raises the intriguing possibility that a BMP gradient might be established in the extracellular matrix of the space of Disse that surrounds portal sinusoid capillaries.

Cover page of Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics

Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics

(2023)

The plasma membrane proteome is a rich resource of functionally important and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here, we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of low-density lipoprotein (LDL) particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.

Cover page of MicroED as a Powerful Tool for Structure Determination of Macrocyclic Drug Compounds Directly from Their Powder Formulations.

MicroED as a Powerful Tool for Structure Determination of Macrocyclic Drug Compounds Directly from Their Powder Formulations.

(2023)

Macrocycles are important drug leads with many advantages including the ability to target flat and featureless binding sites as well as to act as molecular chameleons and thereby reach intracellular targets. However, due to their complex structures and inherent flexibility, macrocycles are difficult to study structurally, and there are limited structural data available. Herein, we use the cryo-EM method MicroED to determine the novel atomic structures of several macrocycles that have previously resisted structural determination. We show that structures of similar complexity can now be obtained rapidly from nanograms of material and that different conformations of flexible compounds can be derived from the same experiment. These results will have an impact on contemporary drug discovery as well as natural product exploration.